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Abstract The maximum clique problem is a well-known NP-hard problem with applications

in data mining, network analysis, information retrieval, and many other areas related to the
World Wide Web. There exist several algorithms for the problem, with acceptable runtimes for

certain classes of graphs, but many of them are infeasible for massive graphs. We present a new

exact algorithm that employs novel pruning techniques and is able to find maximum cliques
in very large, sparse graphs quickly. Extensive experiments on different kinds of synthetic and

real-world graphs show that our new algorithm can be orders of magnitude faster than existing

algorithms. We also present a heuristic that runs orders of magnitude faster than the exact
algorithm while providing optimal or near-optimal solutions. We illustrate a simple application

of the algorithms in developing methods for detection of overlapping communities in networks.

1. INTRODUCTION

A clique in an undirected graph is a subset of vertices in which every two vertices are
adjacent to each other. The maximum clique problem seeks to find a clique of the largest
possible size in a given graph.

The maximum clique problem, and the related maximal clique and clique enumeration
problems, find applications in a wide variety of domains, many intimately related to the
World Wide Web. A few examples include: information retrieval [1], community detection
in networks [17, 41, 47], spatial data mining [52], data mining in bioinformatics [36],
disease classification based on symptom correlation [6], pattern recognition [44], analysis
of financial networks [4], computer vision [22], and coding theory [7]. More examples of
application areas can be found in [20, 43].
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To get a sense for how clique computation arises in the aforementioned contexts,
consider a generic data mining or information retrieval problem. A typical objective here
is to retrieve data that are considered similar based on some metric. Constructing a graph
in which vertices correspond to data items and edges connect similar items, a clique in the
graph would then give a cluster of similar data.

The maximum clique problem is NP-hard [18]. Most exact algorithms for solv-
ing it employ some form of branch-and-bound approach. While branching systematically
searches for all candidate solutions, bounding (also known as pruning) discards fruit-
less candidates based on a previously computed bound. The algorithm of Carraghan and
Pardalos [8] is an early example of a simple and effective branch-and-bound algorithm
for the maximum clique problem. More recently, Östergård [40] introduced an improved
algorithm and demonstrated its relative advantages via computational experiments. Up-
per bounds computed using vertex coloring to enhance the branch-and-bound approach
have been used by Tomita and Seki [49], and later, Konc and Janežič [28]. Other ex-
amples of branch-and-bound algorithms for the clique problem include the works of
Bomze et al., Segundo et al., and Babel and Tinhofer [6, 54, and 3]. A recent work
[45] compares various exact algorithms for the maximum clique problem.

In this article, we present a new exact branch-and-bound algorithm for the maximum
clique problem that employs several new pruning strategies in addition to those used in
[8], [40], [49] and [28], making it suitable for massive graphs. We run our algorithms
on a large variety of test graphs and compare its performance with the algorithms by
[8, 40, 49, 50, 28, 48]. We find our new exact algorithm to be up to orders of magnitude
faster on large, sparse graphs and of comparable runtime on denser graphs. We also present
a new heuristic, which runs several orders of magnitude faster than the exact algorithm
while providing solutions that are optimal or near-optimal for most cases. The algorithms
are presented in detail in Section 3 and the experimental evaluations and comparisons are
presented in Section 4.

Both the exact algorithm and the heuristic are well suited for parallelization. We
discuss a simple shared-memory parallelization and present performance results showing
its promise in Section 5. We also include (in Section 6) an illustration of how the algorithms
can be used as parts of a method for detecting overlapping communities in networks. We
have made our implementations publicly available.1

2. RELATED PREVIOUS ALGORITHMS

Given a simple undirected graph G, the maximum clique can clearly be obtained
by enumerating all of the cliques present in it and picking the largest of them. A simple-
to-implement algorithm that avoids enumerating all cliques and instead works with a
significantly reduced partial enumeration was presented in [8]. The reduction in enumeration
is achieved via a pruning strategy, which reduces the search space tremendously. The
algorithm works by performing at each step i, a depth first search from vertex vi , where

1http://cucis.ece.northwestern.edu/projects/MAXCLIQUE/
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the goal is to find the largest clique containing the vertex vi . At each depth of the search,
the algorithm compares the number of remaining vertices that could potentially constitute
a clique containing vertex vi against the size of the largest clique encountered thus far. If
that number is found to be smaller, the algorithm backtracks (search is pruned).

An algorithm was devised in [40] that incorporated an additional pruning strategy to
the one by [8]. The opportunity for the new pruning strategy is created by reversing the order
in which the search is done by the that algorithm [8]. This allows for an additional pruning
with the help of some auxiliary bookkeeping. Experimental results in [40] showed that the
algorithm by [40] is faster than the algorithm by [8] on random and DIMACS benchmark
graphs [25]. However, the new pruning strategy used in this algorithm is intimately tied
to the order in which vertices are processed, introducing an inherent sequentiality into the
algorithm.

A number of existing branch-and-bound algorithms for maximum clique also use a
vertex-coloring of the graph to obtain an upper bound on the maximum clique. A popular
and recent method based on this idea is the MCQ algorithm of [49]. More recently, an
improved version of MCQ, known as MaxCliqueDyn [28] (with the variants MCQD and
MCQD + CS), that involves the use of tighter, computationally more expensive upper
bounds applied on a fraction of the search space was presented [28]. Another improved
version of MCQ is BBMC [48], which makes use of bit strings to sort vertices in constant
time as well as to compute graph transitions and bounds efficiently.

3. THE NEW ALGORITHMS

We describe in this section new algorithms that overcome the shortcomings mentioned
earlier; the new algorithms use additional pruning strategies, maintain simplicity, and avoid
a sequential computational order. We begin by first introducing the following notations.
We identify the n vertices of the input graph G = (V,E) as {v1, v2, . . . , vn}. The set of
vertices adjacent to a vertex vi , the set of its neighbors, is denoted by N (vi). And the degree
of the vertex vi , the cardinality of N (vi), is denoted by d(vi). In our algorithm, the degree
is computed once for each vertex at the beginning.

3.1. The Exact Algorithm

Recall that the maximum clique in a graph can be found by computing the largest
clique containing each vertex and picking the largest among these. A key element of our
exact algorithm is that during the search for the largest clique containing a given vertex,
vertices that cannot form cliques larger than the current maximum clique are pruned, in
a hierarchical fashion. The method is outlined in detail in Algorithm 1. Throughout, the
variable max stores the size of the maximum clique found thus far. Initially, it is set to be
equal to the lower bound lb provided as an input parameter. It gives the maximum clique
size when the algorithm terminates.

To obtain the largest clique containing a vertex vi , it is sufficient to consider only
the neighbors of vi . The main routine MaxClique thus generates for each vertex vi ∈ V

a set U ⊆ N (vi) (neighbors of vi that survive pruning) and calls the subroutine Clique on
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Algorithm 1 Algorithm for finding the maximum clique of a given graph. Input: Graph
G = (V,E), lower bound on clique lb (default, 0). Output: Size of maximum clique.

1: procedure MaxClique(G = (V,E),
lb)

2: max ← lb
3: for i : 1 to n do
4: if d(vi) ≥ max then ( Pruning 1)
5: U ← ∅
6: for each vj ∈ N (vi) do
7: if j > i then ( Pruning 2)
8: if d(vj ) ≥ max then

( Pruning 3)
9: U ← U ∪ {vj }

10: Clique(G,U, 1)

Subroutine

1: procedure Clique(G = (V,E), U ,
size)

2: if U = ∅ then
3: if size > max then
4: max ← size

5: return
6: while |U | > 0 do
7: if size + |U | ≤ max then (

Pruning 4
8: return
9: Select any vertex u from U

10: U ← U \ {u}
11: N ′(u) := {w|w ∈ N (u)∧d(w) ≥

max} ( Pruning 5
12: Clique(G,U ∩N ′(u), size + 1)

U . The subroutine Clique goes through every relevant clique containing vi in a recursive
fashion and returns the largest. We use size to maintain the size of the clique found at any
point through the recursion. Because we start with a clique of just one vertex, the value of
size is set to one initially, when Clique is called (Line 10, MaxClique).

Our algorithm consists of several pruning steps. Pruning 1 (Line 4, MaxClique)
filters vertices having strictly fewer neighbors than the size of the maximum clique already
computed. These vertices can be ignored, since even if a clique were to be found, its size
would not be larger than max. While forming the neighbor list U for a vertex vi , we include
only those of vi’s neighbors for which the largest clique containing them has not been
found (Pruning 2; Line 7, MaxClique), to avoid recomputing previously found cliques.
Pruning 3 (Line 8, MaxClique) excludes vertices vj ∈ N (vi) that have degree less than
the current value of max, since any such vertex could not form a clique of size larger than
max. Pruning 4 (Line 7, Clique) checks for the case in which, even if all vertices of U

were added to get a clique, its size would not exceed that of the largest clique encountered
so far in the search, max. Pruning 5 (Line 11, Clique) reduces the number of comparisons
needed to generate the intersection set in Line 12. Note that the routine Clique is similar
to the algorithm in [8]; Pruning 5 accounts for the main difference. Also, Pruning 4 is used
in most existing algorithms, whereas Prunings 1, 2, 3, and 5 are not.

3.2. The Heuristic

The exact algorithm examines all relevant cliques containing every vertex. Our heuris-
tic, shown in Algorithm 2, considers only one neighbor with maximum degree at each step
instead of recursively considering all neighbors from the set U , and, thus, is much faster.
The vertex with maximum degree is chosen for this intuitive reason: in a relatively fairly
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Algorithm 2 Heuristic for finding the maximum clique in a graph. Input: Graph G =
(V,E). Output: Approximate size of maximum clique.

1: procedure MaxCliqueHeu
(G = (V,E))

2: for i : 1 to n do
3: if d(vi) ≥ max then
4: U ← ∅
5: for each vj ∈ N (vi) do
6: if d(vj ) ≥ max then
7: U ← U ∪ {vj }
8: CliqueHeu(G,U, 1)

Subroutine

1: procedure CliqueHeu(G = (V,E),
U , size)

2: if U = ∅ then
3: if size > max then
4: max ← size

5: return
6: Select a vertex u ∈ U of maximum

degree in G

7: U ← U \ {u}
8: N ′(u) := {w|w ∈ N (u) ∧ d(w) ≥

max}
9: CliqueHeu(G,U ∩N ′(u), size+1)

connected subgraph, a vertex with the maximum degree is more likely to be a member of
the largest clique containing that vertex than to any other.

3.3. Complexity

The exact algorithm, Algorithm 1, examines for every vertex vi all candidate cliques
containing the vertex vi in its search for the largest clique. Its time complexity is exponential
in the worst case. The heuristic, Algorithm 2, loops over the n vertices, each time possibly
calling the subroutine CliqueHeu, which effectively is a loop that runs until the set U

is empty. Clearly, |U | is bounded by the max degree � in the graph. The subroutine also
includes the computation of a neighbor list, whose runtime is bounded by O(�). Thus, the
time complexity of the heuristic is bounded by O(n ·�2).

3.4. Graph Data Structure

Our implementation uses a simple adjacency list representation to store the graph.
This is done by maintaining two arrays. Given a graph G = (V,E), with its vertices
numbered from 0 to |V | − 1, the edge array maintains the concatenated list of sorted
neighbors of each vertex. The size of this array is 2|E|. The vertex array is |V | elements
long, one for each vertex in sequential order, and each element points (stores the array index)
to the starting point of its neighbor list in the edge array. Figure 1 shows our representation
of the data structure used for a sample graph.

4. EXPERIMENTAL EVALUATION

We present in this section results comparing the performance of our algorithm with
other existing algorithms. Our experiments were performed on a Linux workstation running
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Figure 1 The adjacency-list data structure used in our implementation shown for a sample graph. Each element
in the vertex array stores the index to the starting element of its neighbor list in the edge array.

64-bit Red Hat Enterprise Linux Server release 6.2 with a 2GHz Intel Xeon E7540 processor
with 32GB of main memory. Our implementation is in C++, compiled using gcc version
4.4.6 with −O3 optimization.

4.1. Test Graphs

Our testbed consists of 91 graphs, grouped into three categories:

1. Real-world graphs. Under this category, we consider 10 graphs downloaded from
the University of Florida (UF) Sparse Matrix Collection [12], 5 graphs from Pajek
data-sets [3], and 10 graphs from the Stanford Large Network Dataset Collection
[31]. The graphs originate from various real-world applications. Table I gives a
quick overview of the graphs and their origins.

2. Synthetic Graphs. In this category we consider 15 graphs generated using the
R-MAT algorithm [9]. The graphs are subdivided into three categories, depending
on the structures they represent:

a. Random graphs (5 graphs) – Erdős-Rényi random graphs generated using
R-MAT with the parameters (0.25, 0.25, 0.25, 0.25). We denoted these with
prefix rmat er.

b. Skewed Degree, Type 1 graphs (5 graphs) – graphs generated using R-MAT
with the parameters (0.45, 0.15, 0.15, 0.25). These are denoted with prefix
rmat sd1.

c. Skewed Degree, Type 2 graphs (5 graphs) – graphs generated using R-MAT
with the parameters (0.55, 0.15, 0.15, 0.15). These are denoted with prefix
rmat sd2.

3. DIMACS graphs. This last category consists of 51 graphs selected from the
Second DIMACS Implementation Challenge [25]. Among these, 5 graphs are
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considered for discussion in the next few sections, and the results for the rest are
reported in Table X in the Appendix.

The DIMACS graphs are an established benchmark for the maximum clique problem,
but they are of rather limited size and variation. In contrast, the real-work networks included
in category 1 of the testset and the synthetic (RMAT) graphs in category 2 represent a wide
spectrum of large graphs posing varying degrees of difficulty for the algorithms. The rmat er
graphs have normal degree distribution, whereas the rmat sd1 and rmat sd2 graphs have
skewed degree distributions and contain many dense local subgraphs. The rmat sd1 and
rmat sd2 graphs differ primarily in the magnitude of maximum vertex degree they contain;
the rmat sd2 graphs have much higher maximum degree. Table II lists basic structural
information (the number of vertices, number of edges, and the maximum degree) about 45
of the test graphs (25 real-world, 15 synthetic, and 5 DIMACS).

4.2. Algorithms for Comparison

The algorithms we consider for comparison are those by

� Carraghan Pardalos (CP), [8]; we used our own implementation of this algorithm.
� Östergård algorithm [40]; we used the publicly available cliquer source code [39].
� Konc and Janežič [28]; we used the code MaxCliqueDyn or MCQD.3 Among

the variants available in MCQD, we report results on MCQD+CS (which uses
improved coloring and dynamic sorting), because it is the best-performing variant.
The MaxCliqueDyn code was not capable of handling large input graphs and had
to be aborted for many instances. For those that ran successfully, we had to first
modify the graph reader to make it able to handle graphs with multiple connected
components.

� MCQ [49].
� MCS [50].
� BBMC [48].

For MCQ, MCS, and BBMC, we used the publicly available Java implementation, MCQ1,
MCSa1, and BBMC1, respectively.4 These implementations failed to run because of mem-
ory limitations in spite of making available 20 GB of memory for almost all (except two)
of the larger data-sets. Hence, timings are reported only for DIMACS graphs.

In addition to comparing with the aforementioned algorithms, for the Pajek and
Stanford data-sets we also provide comparison of the timing results of our algorithm
with the maximal clique enumeration algorithm [14]. For this, we directly quote numbers
published in [14], and the results are listed in Table VIII in the Appendix. It should be
kept in mind that maximal clique enumeration in general is a more difficult problem than

3Available at http://www.sicmm.org/~konc/maxclique/.
4By [45]; available at http://www.dcs.gla.ac.uk/~pat/maxClique/.
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Graph Description

cond-mat-2003 [38] A collaboration network of scientists posting preprints on
the condensed matter archive2 in the period
between January 1, 1995 and June 30, 2003.

email-Enron [34] A communication network representing email exchanges.
dictionary28 [3] Pajek network of words.
Fault 639 [16] A structural problem discretizing a faulted gas reservoir with

tetrahedral Finite Elements and triangular Interface Elements.
audikw 1 [12] An automotive crankshaft model of TETRA elements.
bone010 [51] A detailed microfinite element model of bones representing

the porous bone microarchitecture.
af shell [12] A sheet metal forming simulation network.
as-Skitter [34] An Internet topology graph from trace routes run daily in 2005.
roadNet-CA [34] A road network of California. Nodes represent intersections

and endpoints and edges represent the roads connecting them.
kkt power [12] An Optimal Power Flow (nonlinear optimization) network.

foldoc [23] A searchable dictionary of terms related to computing.
eatRS [27] The Edinburgh Associative Thesaurus, a set of word associa-

tion
norms showing the counts of word association as collected
from subjects.

hep-th [26] Citation data from KDD Cup 2003, a knowledge discovery
and
data mining competition held in conjunction with the Ninth
ACM SIGKDD Conference.

patents [21] Data-set containing information on almost 3 million U.S.
patents granted between January 1963 and December 1999,
and
all citations made to these patents between 1975 and 1999.

days-all [11] Reuters terror news network obtained from the CRA networks
produced by Steve Corman and Kevin Dooley at Arizona
State University.

roadNet-TX [34] Road network of Texas.
amazon0601 [32] Amazon product copurchasing network from June 1 2003.
email-EuAll [35] E-mail network from a EU research institution.
web-Google [19] Web graph released by Google in 2002 as a part of Google

Programming Contest.
soc-wiki-Vote [33] Wikipedia who-votes-on-whom network.
soc-slashdot0902 [34] Slashdot social network from November 2008.
cit-Patents [21] Citation network among US Patents.
soc-Epinions1 [46] Who-trusts-whom network of Epinions.com.
soc-wiki-Talk [33] Wikipedia talk (communication) network.
web-berkstan [34] Web graph of Berkeley and Stanford.

Table I Overview of real-world graphs in the testbed (UF, Pajek, and Stanford datasets) and their origins.

2www.arixiv.org



MAXIMUM CLIQUE PROBLEM ON MASSIVE GRAPHS 429

G |V | |E| � G |V | |E| �

cond-mat-2003 31,163 120,029 202 rmat sd1 1 131,072 1,046,384 407
email-Enron 36,692 183,831 1,383 rmat sd1 2 262,144 2,093,552 558
dictionary28 52,652 89,038 38 rmat sd1 3 524,288 4,190,376 618
Fault 639 638,802 13,987,881 317 rmat sd1 4 1,048,576 8,382,821 802
audikw 1 943,695 38,354,076 344 rmat sd1 5 2,097,152 16,767,728 1,069
bone010 986,703 35,339,811 80 rmat sd2 1 131,072 1,032,634 2,980
af shell10 1,508,065 25,582,130 34 rmat sd2 2 262,144 2,067,860 4,493
as-Skitter 1,696,415 11,095,298 35,455 rmat sd2 3 524,288 4,153,043 6,342
roadNet-CA 1,971,281 2,766,607 12 rmat sd2 4 1,048,576 8,318,004 9,453
kkt power 2,063,494 6,482,320 95 rmat sd2 5 2,097,152 16,645,183 14,066
foldoc 13,356 91,470 728 rmat er 1 131,072 1,048,515 82
eatRS 23,219 304,938 1090 rmat er 2 262,144 2,097,104 98
hep-th 27,240 341,923 2411 rmat er 3 524,288 4,194,254 94
patents 240,547 560,943 212 rmat er 4 1,048,576 8,388,540 97
days-all 13,308 148,035 2265 rmat er 5 2,097,152 16,777,139 102

hamming6-4 64 704 22
roadNet-TX 1,393,383 1,921,660 12 johnson8-4-4 70 1,855 53
amazon0601 403,394 2,247,318 2752 keller4 171 9,435 124
email-EuAll 265,214 364,481 7636 c-fat200-5 200 8,473 86
web-Google 916,428 4,322,051 6332 brock200 2 200 9,876 114
soc-wiki-Vote 8,297 100,762 1065
soc-slashdot0902 82,168 504,230 2252
cit-Patents 3,774,768 16,518,947 793
soc-Epinions1 75,888 405,740 3044
soc-wiki-Talk 2,394,385 4,659,565 100029
web-berkstan 685,230 6,649,470 84230

Table II Structural properties—the number of vertices |V |; the umber of edges |E|; and the maximum degree
�—of the graphs G in the testbed. The graphs on the left side are graphs from the UF collection, Pajek data-sets,
and Stanford Large Dataset collection. On the right are the RMAT graphs; and the DIMACS Challenge graphs.

maximum clique finding, and that these experiments have been performed on different test
environments. Therefore, the runtime results should be understood in a qualitative sense.

4.3. Results

Table III shows the size of the maximum clique (ω) and the runtimes of our exact
algorithm, Algorithm 1, and the algorithms of CP, cliquer, and MCQD+CS for all the graphs
in the testbed except for the Pajek and Stanford test graphs; results on the Pajek and Stanford
graphs are presented in Table IV. The last two columns in Table III show the results of our
heuristic (Algorithm 2)—the size of the maximum clique returned (ωA2 ) and its runtime
(τA2 ). The columns labeled P 1, P 2, P 3, and P 5 list the number of vertices/branches pruned
in the respective pruning steps of Algorithm 1. Data on Pruning 4 is omitted because that
pruning is used by all of the algorithms compared in the table. The displayed pruning
numbers have been rounded (K stands for 103, M for 106, and B for 109); the exact numbers
can be found in Table IX in the Appendix.

In Table III, the fastest runtime for each instance is indicated with boldface. An
asterisk (*) indicates that an algorithm did not terminate within 25,000 seconds for a
particular instance. A hyphen (-) indicates that the publicly available implementation (the
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Graph ω τCP τcliquer τMCQD+CS τA1 P 1 P 2 P 3 P 5 ωA2 τA2

cond-mat-2003 25 4.87 11.17 2.41 0.011 29K 48K 6,527 17K 25 <0.01
email-Enron 20 7.01 15.08 3.70 0.998 32K 155K 4,060 8M 18 0.26
dictionary28 26 7.70 32.74 7.69 <0.01 52K 4,353 2,114 107 26 <0.01
Fault 639 18 14571.20 4437.14 — 20.03 36 13M 126 1,116 18 5.80
audikw 1 36 * 9282.49 — 190.17 4,101 38M 59K 721K 36 58.38
bone010 24 * 10002.67 — 393.11 37K 34M 361K 44M 24 24.39
af shell10 15 * 21669.96 — 50.99 19 25M 75 2,105 15 10.67
as-Skitter 67 24385.73 * — 3838.36 1M 6M 981K 737M 66 27.08
roadNet-CA 4 * * — 0.44 1M 1M 370K 4,302 4 0.08
kkt power 11 * * — 2.26 1M 4M 401K 2M 11 1.83

rmat er 1 3 256.37 215.18 49.79 0.38 780 1M 915 8,722 3 0.12
rmat er 2 3 1016.70 865.18 — 0.78 2,019 2M 2,351 23K 3 0.24
rmat er 3 3 4117.35 3456.39 — 1.87 4,349 4M 4,960 50K 3 0.49
rmat er 4 3 16419.80 13894.52 — 4.16 9,032 8M 10K 106K 3 1.44
rmat er 5 3 * * — 9.87 18K 16M 20K 212K 3 2.57

rmat sd1 1 6 225.93 214.99 50.08 1.39 39K 1M 23K 542K 6 0.45
rmat sd1 2 6 912.44 858.80 — 3.79 90K 2M 56K 1M 6 0.98
rmat sd1 3 6 3676.14 3446.02 — 8.17 176K 4M 106K 2M 6 1.78
rmat sd1 4 6 14650.40 13923.93 — 25.61 369K 8M 214K 5M 6 4.05
rmat sd1 5 6 * * — 46.89 777K 16M 455K 12M 6 9.39
rmat sd2 1 26 427.41 213.23 48.17 242.20 110K 853K 88K 614M 26 32.83
rmat sd2 2 35 4663.62 851.84 — 3936.55 232K 1M 195K 1B 35 95.89
rmat sd2 3 39 13626.23 3411.14 — 10647.84 470K 3M 405K 1B 37 245.51
rmat sd2 4 43 * 13709.52 — * * * * * 42 700.05
rmat sd2 5 N * * — * * * * * 51 1983.21

hamming6-4 4 <0.01 <0.01 <0.01 <0.01 0 704 0 0 4 <0.01
johnson8-4-4 14 0.19 <0.01 <0.01 0.23 0 1,855 0 0 14 <0.01
keller4 11 22.19 0.15 0.02 23.35 0 9,435 0 0 11 <0.01
c-fat200-5 58 0.60 0.33 0.01 0.93 0 8,473 0 0 58 0.04
brock200 2 12 0.98 0.02 <0.01 1.10 0 9,876 0 0 10 <0.01

Table III Comparison of runtimes (in seconds) of algorithms CP [8], cliquer [40], MCQD+CS [28] and and our
new exact algorithm (A1) for the graphs in the testbed. An asterisk (*) indicates that the algorithm did not terminate
within 25,000 seconds for a particular instance. A hyphen (-) indicates that the publicly available implementation
we used could not handle this instance due to its large size. Columns P 1, P 2, P 3 and P 5 list the number of
vertices/branches pruned in steps Pruning 1, 2, 3, and 5 of our exact algorithm (K stands for the quantity 103, M
for 106, and B for 109). The column ω (second column) lists the maximum clique size in each graph, the column
ωA2 lists the clique size returned by our heuristic, and the column τA2 lists the heuristic’s runtime.

MaxCliqueDyn code) had to be aborted because the input graph was too large for the
implementation to handle. For the graph rmat sd2 5, none of the algorithms computed the
maximum clique size in a reasonable time; the entry there is marked with N, standing for
“Not Known.”

We discuss in what follows our observations from this table for the exact algorithm
and the heuristic.

4.3.1. Exact algorithms. As expected, our exact algorithm gave the same size of
maximum clique as the other three algorithms for all test cases. In terms of runtime, its
relative performance, compared to the other three, varied in accordance with the advantages
afforded by the various pruning steps.
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G ω τcliquer τMCQD+CS τA1 ωA2 τA2

foldoc 9 2.23 0.58 0.05 9 <0.01
eatRS 9 7.53 1.86 1.81 9 1.80
hep-th 23 9.43 2.43 4.48 23 0.06
patents 6 2829.48 239.66 0.13 6 0.03
days-all 28 2.47 0.59 75.37 21 0.05

roadNet-TX 4 * * 0.26 4 0.04
amazon0601 11 3190.11 717.99 0.20 11 0.30
email-EuAll 16 943.74 270.67 0.92 14 0.06
web-Google 44 10958.68 * 0.35 44 0.6
soc-wiki-Vote 17 0.89 0.24 4.31 14 0.02
soc-slashdot0902 27 88.38 23.63 25.54 22 0.06
cit-Patents 11 2.47 * 19.99 10 4.15
soc-Epinions1 23 73.85 19.95 15.01 19 0.06
soc-wiki-Talk 26 * * 6885.13 18 0.45
web-berkstan 201 6416.61 * 44.70 201 32.03

Table IV Comparison of runtimes of algorithms: [40] (τcliquer ), [28] (τMCQD+CS ), with that of our new exact
algorithm (τA1) for selected medium and large Pajek and Stanford data sets. An asterisk (*) indicates that the
algorithm did not terminate within 15,000 seconds for that instance. The column ω lists the maximum clique size
in each graph, the column ωA2 lists the clique size returned by our heuristic and the column τA2 lists the heuristic’s
runtime.

Vertices that are discarded by Pruning 1 are skipped in the main loop of the algorithm,
and the largest cliques containing them are not computed. Pruning 2 avoids recomputing
previously computed cliques in the neighborhood of a vertex. In the absence of Pruning 1,
the number of vertices pruned by Pruning 2 would be bounded by the number of edges in
the graph (note that this is more than the total number of vertices in the graph). Whereas
Pruning 3 reduces the size of the input set on which the maximum clique is to be computed,
Pruning 5 brings down the time taken to generate the intersection set in Line 12 of the
subroutine. Pruning 4 corresponds to backtracking. Unlike Pruning steps 1, 2, 3, and 5,
Pruning 4 is used by all three of the other algorithms in our comparison. The primary
strength of our algorithm is its ability to take advantage of pruning in multiple steps in a
hierarchical fashion, allowing for opportunities for one or more of the steps to be triggered
and positively impact the performance.

In Figure 2 we show the number of vertices discarded by all the pruning steps of
the exact algorithm normalized by the total number of edges in a graph for the real-world
graphs in Table III. We cut few bars reaching 140% because their correspnding values are
much higher. In the Appendix, we provide a complete tabulation of the raw numbers for
the pruned vertices in all the steps for all the graphs in the testbed. It can be seen for these
graphs, pruning steps 2 and 5 in particular discard a large percentage of vertices, potentially
resulting in large runtime savings. The general behavior of the pruning steps Pruning 1,
2, 3, and 5 for the synthetic graphs rmat er and rmat sd1 was observed to be somewhat
similar to that depicted in Figure 2 for the real-world graphs. In contrast, for the DIMACS
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graphs, the number of vertices pruned in steps Pruning 1, 3, and 5 were observed to be
zero; the numbers in the step Pruning 2 were nonzero but relatively modest.

As a result of the differences seen in the effects of the pruning steps, as discussed
below, the runtime performance of our algorithm (seen in Table III) compared to the other
three algorithms varied in accordance with the differences in the structures represented by
the different categories of graphs in the testbed.

Real-world graphs. For most of the graphs in this category (Table III), it can be
seen that our algorithm runs several orders of magnitude faster than the other three, mainly
due to the large amount of pruning the algorithm attained. These numbers also illustrate the
great benefit of hierarchical pruning. For the graphs Fault 639, audikw 1, and af shell10,
Prunings 1, 3, and 5 have only minimal impact, whereas Pruning 2 makes a big difference,
resulting in impressive runtimes. The number of vertices pruned in steps Pruning 1 and
3 varied among the graph within the category, ranging from 0.001% for af shell to a
staggering 97% for as-Skitter for the step Pruning 1. For the graphs in Table 4.3 as well,
one can observe that our algorithm performs much better than the others.

Synthetic graphs. For the synthetic graph types rmat er and rmat sd1, our algorithm
clearly outperforms the other three by a few orders of magnitude in all cases. This is also
primarily due to the high number of vertices discarded by the new pruning steps. In
particular, for rmat sd1 graphs, between 30% to 37% of the vertices are pruned just in the
step Pruning 1. For the rmat sd2 graphs, which have relatively larger maximum clique and
higher maximum degree than the rmat sd1 graphs, our algorithm is observed to be faster
than CP but slower than cliquer.

DIMACS graphs. The runtime of our exact algorithm for the DIMACS graphs is in
most cases comparable to that of CP and higher than that of cliquer and MCQD+CS. For
these graphs, only Pruning 2 was found to be effective, and thus the performance results
agree with one’s expectation. The timings on a much larger collection of DIMACS graphs
are presented in Table X in the Appendix.

It is to be noted that the DIMACS graphs are intended to serve as challenging test
cases for the maximum clique problem, and graphs with such high edge densities and low
vertex counts are rare in practice. Most of these have between 20 to 1024 vertices, with an

Figure 2 Number of “pruned” vertices in the various pruning steps normalized by the number of edges in the
graph (in percents) for the UF collection graphs (we cut few bars reachining 140% as their correspnding values
are much higher).
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Figure 3 Runtime (normalized, mean) comparison between various algorithms. For each category of graph, first,
all runtimes for each graph were normalized by the runtime of the slowest algorithm for that graph, and then the
mean was calculated for each algorithm. Graphs were considered only if the runtimes for at least three algorithms
were less than the 25,000 seconds limit set.

average edge density of roughly 0.6, whereas, most real-world graphs are often very large
and sparse, as exemplified by the real-world graphs in our testbed. Other good examples
of instances with similar nature include Internet topology graphs [15], the web graph [29],
and social network graphs [13].

4.3.2. The heuristic. It can be seen that our heuristic runs several orders of magni-
tude faster than our exact algorithm, while delivering either optimal or very close to optimal
solution. It gave the optimal solution on 25 out of the 30 test cases. On the remaining 5
cases where it was suboptimal, its accuracy ranges from 83% to 99% (on average 93%).

Additionally, we run the heuristic by choosing a vertex randomly in Line 6 of Al-
gorithm 2 instead of the one with the maximum degree. We observe that on average, the
solution is optimal only for less than 40% of the test cases compared to 83% when selecting
the maximum degree vertex.

4.3.3. Further analysis. Figure 3 provides an aggregated visual summary of the
runtime trends of the various algorithms across the five categories of graphs in the testbed.

To give a sense of runtime growth rates, we provide in Figure 4 plots of the runtime
of the new exact algorithm and the heuristic for the synthetic and real-world graphs in the
testbed. In addition to the curves corresponding to the runtimes of the exact algorithm and
the heuristic, the figures also include a curve corresponding to the number of edges in the
graph divided by the clock frequency of the computing platform used in the experiment.
This curve is added to facilitate comparison between the growth rate of the runtime of
the algorithms with that of a linear-time (in the size of the graph) growth rate. It can
be seen that the runtime of the heuristic by and large grows somewhat linearly with the
size of a graph. The exact algorithm’s runtime, which is orders of magnitude larger than
the heuristic, exhibited a similar growth behavior for these test cases even though its
worst-case complexity suggests exponential growth in the general case.
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Figure 4 Runtime plots of the new exact and heuristic algorithms. The third curve, labeled edges, shows the
quantity number of edges in the graph divided by the clock frequency of the computing platform used in the
experiment.

5. PARALLELIZATION

We demonstrate in this section how our exact algorithm can be parallelized and
show performance results on a shared-memory platform. The heuristic can be parallelized
following a similar procedure.

As explained in Section 3, the ith iteration of the for loop in the exact algorithm
(Algorithm 1) computes the size of the largest clique that contains the vertex vi . Since
our algorithm does not impose any specific order in which vertices have to be processed,
these iterations can, in principle, be performed concurrently. During such a concurrent
computation, however, different processes might discover maximum cliques of different
sizes—and for the pruning steps to be most effective, the current globally largest maximum
clique size needs to be communicated to all processes as soon as it is discovered. In a
shared-memory programming model, the global maximum clique size can be stored as a
shared variable accessible to all the processing units, and its value can be updated by the
relevant processor at any given time. In a distributed-memory setting, more care needs to
be exercised to keep the communication cost low.

We implemented a shared-memory parallelization based on the procedure described
using OpenMP. Since the global value of the maximum clique is shared by all processing
units, we embed the step that updates the maximum clique, i.e., Line 4 of Algorithm 1, into
a critical section (an OpenMP feature that enforces a lock, thus allowing only one thread
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Figure 5 Performance (timing and speedup plots) of shared-memory parallelization on graphs in the test bed.
The top set of figures show performance on the real-world graphs, whereas the bottom set show results for the
RMAT graphs. Graphs whose sequential runtime is less than 5 seconds were omitted.

at a time to make the update). Further, we use dynamic load scheduling, because different
vertices might return different sizes of maximum clique, resulting in different work loads.

We performed experiments on the same graphs listed in the testbed described in
Section 4. For these, we used a Linux workstation with six 2.00 GHz Intel Xeon E7540
processors. Each processor has six cores, each with 32 KB of L1 and 256 KB of L2 cache,
and each processor shares an 18 MB L3 cache.

Figure 5 shows the timings and speedups we obtained for the real-world and RMAT
graphs separately. We omitted graphs whose sequential runtimes were less than 5 seconds
because they were too low to measure to do meaningful assessment of parallelization
performance. For most of the real-world graphs, one can see from the figure that we
obtained near-linear scaling of runtimes and speedups when up to 16 threads are used.
The only exception is the graph as-Skitter. The relatively poorer scaling there is likely
because the instance has a relatively large maximum clique, and hence, the core (thread)
that computes it spends a relatively large amount of time computing it while other cores
(threads) that have completed their processing of the remaining vertices remain idle. For the
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other instances of the real-world graphs, the maximum speedup we obtained while using
32 cores/threads is around 22×.

For the RMAT graphs, it can be seen that the scaling of the runtime and speedups vary
with the structures (RMAT parameters) of the instances. We observed superlinear speedups
for a couple of the instances, which happens as a result of some unfruitful searches in the
branch-and-bound procedure being discovered early as a result of parallel processing. This
phenomenon is better exploited and more fully explored in other works in the literature,
such as [37]. For the other instances, the algorithm scales fairly well up to eight threads, and
begins to degrade thereafter. The speedups we obtained range between 6× to 20× when 32
threads are used.

6. CLIQUE ALGORITHMS AND COMMUNITY DETECTION

In this section we demonstrate how clique-finding algorithms can be used for detecting
overlapping communities in networks.

Background. Most community detection algorithms are designed to identify mu-
tually independent communities in a given network and, therefore, are not suitable for
detecting overlapping communities. Yet, in many real-world networks, it is natural to find
vertices (or members) that belong to more than one group (or community) at the same time.

The Clique Percolation Method (CPM; [41]) is one effective approach for detecting
overlapping communities in a network. The basic premise in CPM is that a typical com-
munity is likely to be made up of several cliques that share many of their vertices. We
recall a few notions defined in [41] to make this more precise. A clique of size k is called
a k-clique, and two k-cliques are called adjacent if they share k − 1 nodes. A k-clique
community is a union of all k-cliques that can be reached from each other through a series
of adjacent k-cliques. With these notions in hand, a method was devised in [41] to extract
such k-clique communities of a network. Note that, by definition, k-clique communities
allow for overlaps, i.e., common vertices can be shared by the communities.

The CPM algorithm is illustrated in Figure 6. Given a graph, we first extract all
cliques of size k; for this example we choose k = 3. This is followed by generating the
clique graph, in which each k-clique in the original graph is represented by a vertex. An
edge is added between any two k-cliques in the clique graphs that are adjacent. For the
case k = 3, this means an edge is added between any two 3-cliques in the clique graph that
share two common vertices (of the original graph). The connected components in the clique
graph represent a community, and the actual members of the community are obtained by
gathering the vertices of the individual cliques that form the connected component. In our
example in Figure 6, we obtain two communities, which share a common vertex (vertex 2),
forming an overlapping community structure.

A large clique of size q ≥ k contains
(
q

k

)
different k-cliques. An algorithm that tries to

locate the k-cliques individually and examine the adjacency between them can, therefore,
be very very slow for large networks. Two observations are made in [41] that help one come
up with a better strategy. First, a clique of size q is clearly a k-clique connected subset for
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Figure 6 Illustration of overlapping community detection by the Clique Percolation Method (CPM) algorithm on
a sample graph. Steps involved are 1) Detecting the k-cliques 2) Forming the clique-graph 3) Merging members
of the connected components in the clique-graph to obtain the k-clique communities. In this example, node 2 is
shared by the two communities formed, resulting in an overlapping structure.

any k ≤ q. Second, two large cliques that share at least k − 1 nodes form one k-clique
connected component as well. Leveraging these, the strategy of [41] avoids searching for
k-cliques individually and instead first locates the large cliques in the network and then
looks for the k-clique-connected subsets of given k (that is, the k-clique communities) by
studying the overlap between them. More specifically, their algorithm first constructs a
symmetric clique-clique overlap matrix, in which each row represents a large (to be precise
a maximal) clique, each matrix entry is equal to the number of common nodes between the
two corresponding cliques, and each diagonal entry is equal to the size of the clique. The
k-clique communities for a given k are then equivalent to connected clique components in
which the neighboring cliques are linked to each other by at least k − 1 common nodes.
These components are then found [41] by erasing every off-diagonal entry smaller than k−1
and every diagonal entry smaller than k in the matrix, replacing the remaining elements
by one, and then carrying out a component analysis of this matrix. The resulting separate
components are equivalent to the different k-clique communities.

Our method. We devised an algorithm based on a similar idea as the previous
procedure, but using a variant of our heuristic maximum clique algorithm (Algorithm 2)
for the core clique detection step.

The standard CPM in essence presupposes finding all maximal cliques in a network.
The number of maximal cliques in a network can, in general, be exponential in the number
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of nodes n in the network. In our method, we work instead with a smaller set of maximal
cliques. In particular, the basic variant of our method considers exactly one clique per
vertex, the largest of all the maximal cliques that it belongs to. Clearly, this can be too
restrictive a requirement and might fail to add deserving members to a k-clique community.
To allow for more refined solutions, we include a parameter c in the method, which tells us
how many additional cliques per vertex would be considered. The case c = 0 corresponds
to no additional cliques other than the largest maximal clique containing the vertex. The
case c ≥ 1 corresponds to c additional maximal cliques (each of size at least k) per vertex.
Hence, in total, n(c + 1) cliques will be collected. For a particular vertex v, the largest
maximal clique containing it can be heuristically obtained by exploring the neighbor of v

with maximum degree in the corresponding step in Algorithm 2. In contrast, to obtain the
other maximal cliques involving v (case c ≥ 1), we explore a randomly chosen neighbor
of v, regardless of its degree value.

Test on synthetic networks. We tested our algorithm on the Lancichinetti-Fortunato-
Radicchi (LFR) benchmarks5 proposed in [30]. These benchmarks have the attractive
feature that they allow for generation of synthetic networks with known communities
(ground truth). We generated graphs with n = 1000 nodes, average degree K = 10, and
power law exponents τ1 = 2 and τ2 = 1 in the LFR model. We set the maximum degree
Kmax to 50, and the minimum and maximum community sizes Cmin and Cmax to 20 and 50,
respectively. We used two far-apart values each for the mixing parameter μ, the fraction of
overlapping nodes On, and the number of communities each overlapping node belongs to
Om. Specifically, for μ we used 0.1 and 0.3, for On we used 10% and 50%, and for Om we
used 2 and 8. All together, these combinations of parameters resulted in eight graphs in the
testbed.

We evaluated the performance of our algorithm against the ground truth using Omega
Index [10], which is the overlapping version of the Adjusted Rand Index (ARI) [24].
Intuitively, Omega Index measures the extent of agreement between two given sets of
communities by looking at node pairs that occur the same number of times (possibly none)
in both. We used three values for the parameter c of our method: 0, 2, and 5. Recall that c

set to zero corresponds to picking only the largest clique for each node. As c is increased,
more and more large cliques (each of size at least k) are considered for each node.

We compare the performance of our method with that of CFinder,6 an implementation
of CPM [41]. We used the command line utility provided in the package for all experiments.
For this study, we used a MacBook Pro running OS X v.10.9.2 with 2.66GHz Intel Core i7
processor with 2 cores, 256KB of L2 cache per core, 4MB of L3 cache and 8GB of main
memory.

Table V shows the experimental results we obtained. The first three columns of the
table list the various parameters used to generate each test network. The fourth column
lists the number of ground truth communities (C(GT )) in each network. The remaining
columns in the table show performance in terms of the number of communities detected

5http://sites.google.com/site/andrealancichinetti/files
6http://www.cfinder.org
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Our Method

CFinder c = 0 c = 2 c = 5
μ Om On C(GT ) C S � C S � C S � C S �

0.1 2 10% 34 37 55 0.842 60 64 0.758 49 76 0.825 40 59 0.840
0.1 2 50% 44 62 153 0.402 87 116 0.280 83 158 0.363 68 158 0.395
0.1 8 10% 51 58 30 ∼0.0 76 46 ∼0.0 65 39 ∼0.0 61 35 ∼0.0
0.1 8 50% 130 74 68 0.030 74 56 0.020 79 66 0.028 79 72 0.030
0.3 2 10% 35 50 53 0.612 69 67 0.461 64 73 0.577 55 60 0.605
0.3 2 50% 44 60 95 0.193 92 93 0.109 85 102 0.152 77 106 0.169
0.3 8 10% 48 64 35 0.304 79 59 0.239 74 55 0.293 69 46 0.301
0.3 8 50% 142 57 43 0.019 58 46 0.013 61 49 0.017 59 45 0.018

Table V Results of communities detected using our new method and CFinder on LFR benchmarks [30]. All
networks have n = 1000 nodes, and the parameters used to generate the networks are listed in the first three
columns: μ is the mixing parameter, Om is the number of communities each overlapping node is assigned to, On

is the fraction of overlapping nodes, C(GT ) is the number of communities in the input graph (ground truth), C

denotes the number of communities, S the number of shared nodes, and � the omega index.

(C), total number of shared nodes (S) and the Omega Index (�) for CFinder and our method
with different values for the parameter c. In our experiments, for CFinder as well as all
variants of our algorithm, we found that the value of k = 4 gives the best Omega Index
value relative to the ground truth. All results reported in Table V are therefore for k = 4.

In general, we observe that there is a close correlation between our method and
CFinder in terms of all three of the quantities C, S, and �. It can be seen that as we
increase the value of c in our method, the Omega Index values get closer and closer to that
of CFinder. For our algorithm run with c = 0, the Omega Index is about 75% of that of
CFinder. When run with c = 2, it is about 92% and for c = 5, it is about 99%. When we
increased the value of c even further to 10, we observed that the Omega Index was almost
identical to that obtained by CFinder. From this, one can see that we can get almost exactly
the same results as the CPM method by using our algorithm, which uses only a small set
of maximal cliques, as opposed to all the maximal cliques in the graph.

Table VI shows the time taken by CFinder and our method, run with c = 0, 2, and 5.
For our method, the table lists the total runtime τ as well as the time τc spent on just the
clique detection part and the ratio τc/τ expressed in percents (τc%). The remaining time
τ−τc is spent on building the clique-clique overlap matrix, eliminating cliques, component
analysis, and generating the communities. As a side note, we point out that our immediate
goal in the implementation of these later phases has been quick experimentation, rather
than efficient code, and therefore, there is very large room for improving the runtimes. This
is also reflected by the numbers; one can see from the table that the average percentage
of time our algorithm spends on clique finding decreases as c is increased; the quantity is
about 30% when c = 0 and about 16% when c = 5. Yet, looking only at the total time taken
in Table VI, and comparing CFinder and our algorithm run with c = 5 (the case where
the Omega Index values match most closely with CFinder), we see that our algorithm is at
least 4× faster on average. When c is set to 0 and 2, the mean speedups are 51× and 13×,
respectively.
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Our Method

CFinder c = 0 c = 2 c = 5

μ Om On τ τc τ τc% τc τ τc% τc τ τc%

0.1 2 10% 0.913 0.005 0.031 17.3% 0.025 0.255 9.7% 0.050 0.912 5.5%
0.1 2 50% 0.855 0.004 0.016 22.0% 0.010 0.089 10.8% 0.017 0.254 6.8%
0.1 8 10% 0.732 0.004 0.025 17.4% 0.012 0.159 7.4% 0.024 0.550 4.4%
0.1 8 50% 0.358 0.002 0.005 42.8% 0.006 0.016 36.1% 0.011 0.042 26.7%
0.3 2 10% 0.592 0.004 0.013 26.0% 0.011 0.090 11.8% 0.027 0.321 8.3%
0.3 2 50% 0.434 0.002 0.006 38.1% 0.006 0.024 27.2% 0.013 0.068 18.4%
0.3 8 10% 0.472 0.003 0.011 25.7% 0.008 0.064 12.5% 0.016 0.205 7.6%
0.3 8 50% 0.326 0.002 0.005 50.0% 0.006 0.011 54.9% 0.017 0.034 51.3%

Table VI Timing results of our new method and CFinder on the LFR benchmarks. All networks have n = 1000
nodes, and the parameters used to generate the graphs are given by the first three columns: μ is the mixing
parameter, Om is the number of communities each overlapping node is assigned to and On is the fraction of
overlapping nodes, τc is the time spent (in seconds) on computing the cliques, τ is the total time (in seconds), and
τc% is the percentage of time spent for clique computation.

Because the source code for CFinder is not publicly available, we were not able to
measure exactly the proportion of time it spends on clique finding. We suspect it constitutes
a vast proportion of the total runtime.

Test on real-world networks. We also tested our method and CFinder on four of
the real-world graphs from our testbed in Section 4—cond-mat-2003, email-Enron, dictio-
nary28, and roadNet-CA—and a user-interest-based graph generated using data collected
from Facebook. We briefly explain here how this graph was generated. Every user on Face-
book has a wall, which is a the user’s profile space that allows the posting of messages,
often short or temporal notes or comments by other users. We generate a graph with the
walls as vertices, and assign an edge between a pair of vertices, if there is at least one user
who has commented on both walls. We assign edge weights proportional to the number of
common users, because we consider this to be an indicator of the strength of the connection.
A more elaborate explanation of the data collection method and network generation for

OurMethod

CFinder c = 0 c = 5

Name C S τ C S τc τ C S τc τ

cond-mat-2003 4132 5180 68.46 3081 3937 0.130 14.000 3070 4460 0.917 417.151
email-Enron — — — 3947 4229 0.096 7.505 2518 3899 0.819 353.236
dictionary28 3675 4308 9.67 2185 1799 0.040 1.132 3222 4154 0.300 95.596
roadNet-CA 41 0 312.21 42 0 1.788 2.290 42 0 13.287 21.620
facebook 29 29 3.42 38 46 0.002 0.011 19 27 0.023 0.252

Table VII Results of our new algorithm and CFinder on three real-world graphs from Table II and one additional
graph generated using data collected from Facebook. The structural properties of the former three graphs are
listed in Table II. The Facebook graph has 1144 vertices and 2561 edges after thresholding. C is the total number
of communities found, S is the total number of shared nodes, τc is the time spent (in seconds) on computing the
cliques, and τ , the total time (in seconds). A ’-’ denotes that the algorithm did not complete in 30 minutes.
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Figure 7 Some Facebook communities detected by our algorithm.

the Facebook graph is discussed in [42]. As this is a weighted graph, we used a threshold
(of 0.009) to include only strong links, resulting in a network with 1144 vertices and 2561
edges.

The results of our method for c = 0 and 5, k = 4, and CFinder for the case k = 4
on all the five real-world graphs is shown in Table VII. The table lists the number of
communities found by each algorithm, total number of shared nodes, and the total time
taken. For our algorithm, it also specifies the time spent on clique finding. These graphs do
not have any known community structure, so we were not able to measure the Omega Index
values. For the graph email-Enron, CFinder was not able to complete within 30 minutes.
For the c = 0 case, our algorithm comfortably outperforms CFinder, even in terms of total
time, on average performing about 115× faster. For the c = 5 case, the total time taken
by our algorithm turns out to be higher for some cases, and lower for others. However,
it should be noted that the time taken for clique finding is incomparably smaller than the
post-clique-finding processing time.

We also present some of the sports-related communities detected by our algorithm in
the Facebook graph in Figure 7, which is self-explanatory.

7. CONCLUSION

We presented a new exact algorithm and a new heuristic algorithm for the maximum
clique problem. We performed extensive experiments on three broad categories of graphs
and compared the performance of our algorithms to the algorithms (CP) [8], (cliquer)
[40], (MCQ, MCS; [49, 50]), (MCQD; [28]), and (BBMC; [48]). For DIMACS benchmark
graphs and certain dense synthetic graphs (rmat sd2), our new exact algorithm performs
comparably with the CP algorithm, but slower than the others. For large sparse graphs, both
synthetic and real-world, our new algorithm runs several orders of magnitude faster than
the others, and its general runtime is observed to grow nearly linearly with the size of the
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graphs. The heuristic, which runs orders of magnitude faster than our exact algorithm and
the others, delivers an optimal solution for 83% of the test cases, and when it is suboptimal,
its accuracy ranges between 0.83 and 0.99 for the graphs in our testbed. We also showed
how the algorithms can be parallelized. Finally, as a demonstration of the applications
of clique-finding algorithms, we presented a novel and efficient alternative based on our
algorithms to the Clique Percolation Method [41], to detect overlapping communities in
networks.

Maximum clique detection is often avoided by practitioners from being used as a
component in a network analysis algorithm on the grounds of its NP-hardness. The results
shown here suggest that this is not necessarily true, because maximum cliques can, in fact,
be detected rather quickly for most real-world networks that are characterized by sparsity
and other structures well suited for branch-and-bound type algorithms.

FUNDING

This work is supported in part by the following grants: NSF awards CCF-
0833131, CNS-0830927, IIS-0905205, CCF-0938000, CCF-1029166, and OCI-1144061;
DOE awards DE-FG02-08ER25848, DE-SC0001283, DE-SC0005309, DESC0005340,
and DESC0007456; AFOSR award FA9550-12-1-0458. The work of Assefaw Gebremed-
hin is supported in part by the NSF award CCF-1218916 and by the DOE award DE-
SC0010205.

REFERENCES

1. J. G. Augustson and J. Minker. “An Analysis of Some Graph Theoretical Cluster Techniques.”
Journal of the ACM 17:4 (1970), 571–588.

2. L. Babel and G. Tinhofer. “A Branch and Bound Algorithm for the Maximum Clique Problem.”
Mathematical Methods of Operations Research 34:3 (1990), 207–217.

3. V. Batagelj and A. Mrvar, Pajek Datasets. Available online (http://vlado.fmf.uni-lj.si/
pub/networks/data/), 2006.

4. V. Boginski, S. Butenko, and P. M. Pardalos. “Statistical Analysis of Financial Networks.”
Computational Statistics & Data Analysis 48:2 (2005), 431–443.

5. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. “The Maximum Clique Problem.”
In Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers, pp. 1–74,
1999.

6. R. E. Bonner. “On Some Clustering Techniques.” IBM Journal of Research and Development
8:1(1964), 22–32.

7. A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith. “A New Table of Constant Weight
Codes.” IEEE Transactions on Information Theory 36:6 (1990), 1334–1380.

8. R. Carraghan and P. Pardalos. “An Exact Algorithm for the Maximum Clique Problem.” Opera-
tions Research Letters 9:6 (1990), 375–382.

9. D. Chakrabarti and C. Faloutsos. “Graph Mining: Laws, Generators, and Algorithms.” ACM
Computing Surveys 38:1 (2006) p.4.

10. L. M. Collins and C. W. Dent. “Omega: A General Formulation of the Rand Index of Cluster
Recovery Suitable for Non-Disjoint Solutions.” Multivariate Behavioral Research 23:2 (1988),
231–242.



MAXIMUM CLIQUE PROBLEM ON MASSIVE GRAPHS 443

11. S. R. Corman, T. Kuhn, R. D. Mcphee, and K. J. Dooley. “Studying Complex Discursive
Systems: Centering Resonance Analysis of Communication.” Human Communication Research
28:2 (2002), 157–206.

12. T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection.” ACM Transactions
on Mathematical Software (TOMS) 38:1 (2011), 1–25.

13. P. Domingos and M. Richardson. “Mining the Network Value of Customers.” In Proceedings of
the 7th ACM SIGKDD (KDD’01), pp. 57–66. New York, NY, USA: ACM, 2001.

14. D. Eppstein and D. Strash.Listing all maximal cliques in large sparse real-world graphs, in
Proceedings of the 10th International Conference on Experimental Algorithms (SEA’11), edited
by P. M. Pardalos and S. Rebennack pp. 364–375. Berlin, Heidelberg: Springer-Verlag, 2011.

15. M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power-Law Relationships of the Internet
Topology.” In Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’99, pp. 251–262. New York, NY, USA:
ACM, 1999.

16. M. Ferronato, C. Janna, G. Gambolati. “Mixed Constraint Preconditioning in Computational
Contact Mechanics.” Computer Methods in Applied Mechanics and Engineering 197:45–48
(2008), 3922–3931.

17. S. Fortunato. “Community Detection in Graphs.” Physics Reports 486:3 (2010), 75–174.
18. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.
19. Google programming contest. Available online (http://www.google.com/

programming-contest/).
20. G. Gutin, J. Gross, J. Yellen. “Discrete Mathematics & Its Applications.” Handbook of Graph

Theory. CRC Press, 2004.
21. B. H. Hall, A. B. Jaffe, and M. Trajtenberg. “The NBER patent citation data file: Lessons, insights

and methodological tools.” Technical Report, NBER Working Paper, 8498, 2001.
22. R. Horaud and T. Skordas. “Stereo Correspondence Through Feature Grouping and Maximal

Cliques.” IEEE Transactions on Pattern Analysis and Machine Intelligence 11:11(1989), 1168–
1180.

23. D. Howe. “Foldoc: Free On-Line Dictionary of Computing.” Available online (http://foldoc.
org/).

24. L. Hubert and P. Arabie. “Comparing Partitions.” Journal of Classification 2:1 (1985), 193–218.
25. D. Johnson and M. A. Trick, Editors, Cliques, Coloring and Satisfiability: Second DIMACS Im-

plementation Challenge. In DIMACS Series on Discrete Mathematics and Theoretical Computer
Science 26, 1996.

26. KDD Cup. Available online (http://www.cs.cornell.edu/projects/kddcup/index.
html), 2003.

27. G. R. Kiss, C. Armstrong, R. Milroy, and L. Piper. An Associative Thesaurus of English and Its
Computer Analysis. The Computer and Literary Studies. Edinburgh University Press, 1973.
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the Maximum Clique Problem.” Computers & Operations Research 38:2 (2011), 571–581.

49. E. Tomita and T. Seki. “An Efficient Branch-and-Bound Algorithm for Finding a Maximum
Clique.” In Proceedings of the 4th International Conference on Discrete Mathematics and
Theoretical Computer Science, pp. 278–289. Berlin, Heidelberg: Springer-Verlag, 2003.



MAXIMUM CLIQUE PROBLEM ON MASSIVE GRAPHS 445

50. E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. “A Simple and Faster Branch-
and-Bound Algorithm for Finding a Maximum Clique.” In Proceedings of the 4th International
Workshop on Algorithms and Computation (WALCOM), edited by M. Rahman and S. Fujita, pp.
191–203. Berlin, Heidelberg: Springer, 2010.

51. B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard. “A New Method to Determine Tra-
becular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models.”
Journal of Biomechanics 28:1 (1995), 69–81.

52. L. Wang, L. Zhou, J. Lu, and J. Yip. “An Order-Clique-Based Approach for Mining Maximal
Colocations.” Information Sciences 179:19 (2009), 3370–3382.



446 PATTABIRAMAN ET AL.

APPENDIX

G |V | |E| � ω τA1 τES [14]

foldoc 13,356 91,470 728 9 0.05 0.13
eatRS 23,219 304,938 1090 9 1.81 1.03
hep-th 27,240 341,923 2411 23 4.48 1.70
patents 240,547 560,943 212 6 0.13 1.65
days-all 13,308 148,035 2265 28 75.37 5.18

roadNet-TX 1,393,383 1,921,660 12 4 0.26 4.00
amazon0601 403,394 2,247,318 2752 11 0.20 6.03
email-EuAll 265,214 364,481 7636 16 0.92 1.33
web-Google 916,428 4,322,051 6332 44 0.35 9.70
soc-wiki-Vote 8,297 100,762 1065 17 4.31 1.14
soc-slashdot0902 82,168 504,230 2252 27 25.54 2.58
cit-Patents 3,774,768 16,518,947 793 11 19.99 58.64
soc-Epinions1 75,888 405,740 3044 23 15.01 4.78
soc-wiki-Talk 2,394,385 4,659,565 100029 26 6885.13 216.00
web-berkstan 685,230 6,649,470 84230 201 44.70 20.87

Table VIII Comparison of runtimes of our new exact maximum clique-finding algorithm (τA1) and the maximal
clique enumeration algorithm by [14] (τES ) for the Pajek and Stanford data sets in our testbed. The runtimes under
column τES are directly quoted from [14]. The column � denotes the maximum degree, and ω the maximum
clique size of the graph.
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G ω P 1 P 2 P 3 P 4 P 5

cond-mat-2003 25 29,407 48,096 6,527 2,600 17,576
email-Enron 20 32,462 155,344 4,060 110,168 8,835,739
dictionary28 26 52,139 4,353 2,114 542 107
Fault 639 18 36 13,987,719 126 10,767,992 1,116
audikw 1 36 4,101 38,287,830 59,985 32,987,342 721,938
bone010 24 37,887 34,934,616 361,170 96,622,580 43,991,787
af shell10 15 19 25,582,015 75 40,629,688 2,105
as-Skitter 67 1,656,570 6,880,534 981,810 26,809,527 737,899,486
roadNet-CA 4 1,487,640 1,079,025 370,206 320,118 4,302
kkt power 11 1,166,311 4,510,661 401,129 1,067,824 1,978,595

rmat er 1 3 780 1,047,599 915 118,461 8,722
rmat er 2 3 2,019 2,094,751 2,351 235,037 23,908
rmat er 3 3 4,349 4,189,290 4,960 468,086 50,741
rmat er 4 3 9,032 8,378,261 10,271 933,750 106,200
rmat er 5 3 18,155 16,756,493 20,622 1,865,415 212,838

rmat sd1 1 6 39,281 1,004,660 23,898 151,838 542,245
rmat sd1 2 6 90,010 2,004,059 56,665 284,577 1,399,314
rmat sd1 3 6 176,583 4,013,151 106,543 483,436 2,677,437
rmat sd1 4 6 369,818 8,023,358 214,981 889,165 5,566,602
rmat sd1 5 6 777,052 16,025,729 455,473 1,679,109 12,168,698

rmat sd2 1 26 110,951 853,116 88,424 1,067,824 614,813,037
rmat sd2 2 35 232,352 1,645,086 195,427 81,886,879 1,044,068,886
rmat sd2 3 39 470,302 3,257,233 405,856 45,841,352 1,343,563,239
rmat sd2 4 43 ∗ ∗ ∗ ∗ ∗
rmat sd2 5 N ∗ ∗ ∗ ∗ ∗
hamming6-4 4 0 704 0 583 0
johnson8-4-4 14 0 1855 0 136,007 0
keller4 11 0 9435 0 8,834,190 0
c-fat200-5 58 0 8473 0 70449 0
brock200 2 12 0 9876 0 349,427 0

Table IX P 1, P 2, P 3, P 4, and P 5 are the number of vertices pruned in steps Pruning 1, 2, 3, 4, and 5 of
Algorithm 1. An asterisk (*) indicates that the algorithm did not terminate within 25,000 seconds for that instance;
ω denotes the maximum clique size. For some of the graphs, none of the algorithms computed the maximum
clique size in a reasonable time; the entry for the maximum clique size marked with N, stands for “Not Known.”
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G |V | |E| ω τCP τcliquer τMCQD+CS τMCQ1 τMCSa1 τBBMC1 τA1 ωA2 τA2

brock200 1 200 14,834 21 ∗ 10.37 0.75 7.11 5.48 1.7 ∗ 18 0.02
brock200 2 200 9,876 12 0.98 0.02 0.01 0.1 0.1 <0.01 1.1 10 <0.01
brock200 3 200 12,048 15 14.09 0.16 0.03 0.35 0.4 0.1 14.86 12 <0.01
brock200 4 200 13,089 17 60.25 0.7 0.12 0.88 1.11 0.2 65.78 14 <0.01
brock400 1 400 59,723 27 ∗ ∗ 671.24 4145.68 2873.91 762.14 ∗ 20 <0.01
brock400 2 400 59,786 29 ∗ ∗ 272.31 2848.1 2123.73 546.84 ∗ 20 <0.01
brock400 3 400 59,681 31 ∗ ∗ 532.77 2186.3 1523.55 431.92 ∗ 20 <0.01
brock400 4 400 59,765 33 ∗ ∗ 266.43 1038.33 881.31 211.29 ∗ 22 <0.01
brock800 1 800 207,505 N ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 0.3
brock800 2 800 208,166 N ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 0.4
brock800 3 800 207,333 N ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 0.4
brock800 4 800 207,643 26 ∗ ∗ ∗ ∗ ∗ 3455.58 ∗ 17 0.4
c-fat200-1 200 1,534 12 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 12 <0.01
c-fat200-2 200 3,235 24 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 24 <0.01
c-fat200-5 200 8,473 58 0.6 0.33 0.01 0.03 0.03 0.03 0.93 58 0.04
c-fat500-1 500 4,459 14 <0.01 <0.01 <0.01 0.02 0.02 0.05 <0.01 14 <0.01
c-fat500-2 500 9,139 26 0.02 <0.01 0.01 0.02 0.02 0.04 0.01 26 0.01
c-fat500-5 500 23,191 64 3.07 <0.01 <0.01 0.03 0.03 0.05 ∗ 64 0.11
hamming6-2 64 1,824 32 0.68 <0.01 <0.01 <0.01 0.01 <0.01 0.33 32 <0.01
hamming6-4 64 704 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 4 <0.01
hamming8-2 256 31,616 128 ∗ 0.01 0.01 0.04 0.04 0.04 ∗ 128 0.67
hamming8-4 256 20,864 16 ∗ <0.01 0.1 0.4 0.45 0.23 ∗ 16 0.03
hamming10-2 1,024 518,656 512 ∗ 0.31 - 0.36 0.371 0.13 ∗ 512 95.24
johnson8-2-4 28 210 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 4 <0.01
johnson8-4-4 70 1,855 14 0.19 <0.01 <0.01 0.01 0.02 0.01 0.23 14 <0.01
johnson16-2-4 120 5,460 8 20.95 0.04 0.42 0.85 0.95 0.41 22.07 8 <0.01
keller4 171 9,435 11 22.19 0.15 0.02 0.21 0.33 0.12 23.35 11 <0.01
keller5 776 225,990 N ∗ ∗ ∗ ∗ ∗ ∗ ∗ 22 0.6
keller6 3361 4,619,898 N ∗ ∗ ∗ ∗ ∗ ∗ ∗ 45 99.21
MANN a9 45 918 16 1.73 <0.01 <0.01 <0.01 <0.01 <0.01 2.5 16 <0.01
MANN a27 378 70,551 126 ∗ ∗ 3.3 5.75 6.03 0.97 ∗ 125 1.74
MANN a45 1035 533,115 345 ∗ ∗ ∗ 4612.29 3431.67 250.12 ∗ 341 59.96
p hat300-1 300 10,933 8 0.14 0.01 <0.01 0.07 0.08 0.06 0.14 8 <0.01
p hat300-2 300 21,928 25 831.52 0.32 0.03 0.38 0.23 0.09 854.59 24 0.03
p hat300-3 300 33,390 36 ∗ 578.58 4.31 69.91 13.53 3.2 ∗ 26 <0.01
p hat500-1 500 31,569 9 2.38 0.07 0.04 0.33 0.35 0.12 2.44 9 0.02
p hat500-2 500 62,946 36 ∗ 159.96 1.2 63.89 3.87 0.96 ∗ 34 0.14
p hat500-3 500 93,800 50 ∗ ∗ 324.23 ∗ 1428.02 311.06 ∗ 39 0.27
p hat700-1 700 60,999 11 12.7 0.12 0.13 0.96 0.92 0.23 12.73 9 0.04
p hat700-2 700 121,728 44 ∗ ∗ 12.28 675.72 29.36 6.76 ∗ 26 0.15
p hat1000-1 1,000 122,253 10 97.39 1.33 0.41 1.89 2.29 0.69 98.48 10 0.11
p hat1000-2 1,000 244,799 46 ∗ ∗ 406.71 ∗ 1359.88 382.31 ∗ 33 0.57
san200 0.7 1 200 13,930 30 ∗ 0.99 <0.01 0.05 0.47 0.1 ∗ 16 0.01
san200 0.7 2 200 13,930 18 ∗ 0.02 <0.01 0.072 0.04 0.03 ∗ 14 <0.01
san200 0.9 2 200 17,910 60 ∗ 13.4 0.8 18.5 5.85 1.42 ∗ 34 <0.01
san200 0.9 3 200 17,910 44 ∗ 561.64 3.16 134.67 119.27 28.02 ∗ 31 <0.01
san400 0.5 1 400 39,900 13 ∗ <0.01 0.1 0.11 0.11 0.1 ∗ 8 <0.01
san400 0.7 1 400 55,860 40 ∗ ∗ 0.35 1.59 2.94 0.74 ∗ 22 0.1
san400 0.7 2 400 55,860 30 ∗ ∗ 0.1 12.71 19.51 4.79 ∗ 18 <0.01
san400 0.7 3 400 55,860 22 ∗ 5.04 2.1 9.59 10 2.77 ∗ 16 <0.01
san1000 1000 250,500 15 ∗ 0.09 0.45 43.12 8.48 2.55 ∗ 10 0.5

Table X Comparison of runtimes of algorithms: [8] (CP), [40] (τcliquer ), [28] (τMCQD+CS ), [45, 49] (τMCQ1),
[45, 50] (τMCSa1), and [45, 48] (τBBMC1), with that of our new exact algorithm (τA1) for DIMACS graphs. An
asterisk (*) indicates that the algorithm did not terminate within 7,200 seconds for that instance; ω denotes the
maximum clique size, ωA2 the maximum clique size found by our heuristic, and τA2, its runtime. For some of
the graphs, none of the algorithms computed the maximum clique size in a reasonable time; the entries for the
maximum clique size is marked with N, stand for “Not Known.”


