Taylor & Francis
Taylor & Francis Group

Copyright © Taylor & Francis Group, LLC
ISSN: 1542-7951 print/1944-9488 online
DOI: 10.1080/15427951.2015.1051674

Internet Mathematics, 11:572-587, 2015 e

THE ANALYSIS OF KADEMLIA FOR RANDOM IDS

Xing Shi Cai and Luc Devroye
School of Computer Science, McGill University, Montreal, Canada

Abstract Kademlia is the de facto standard searching algorithm for P2P (peer-to-peer) net-
works on the Internet. In our earlier work, we introduced two slightly different models for
Kademlia and studied how many steps it takes to search for a target node by using Kademlia’s
searching algorithm. The first model, in which nodes of the network are labeled with determin-
istic IDs, was discussed in that article. In the second, the Random ID Model, in which nodes
are labeled with random IDs, was only briefly mentioned. Refined results with detailed proofs
for this model are given in this article. Our analysis shows that, with high probability, it takes
about clog n steps to locate any node, where n is the total number of nodes in the network and
c is a constant that does not depend on n.

1. INTRODUCTION TO KADEMLIA

A peer-to-peer (P2P) network [11] is a decentralized computer network that allows
participating computers (nodes) to share resources. Some P2P networks have millions of
live nodes. To allow searching for a particular node without introducing bottlenecks in the
network, a group of algorithms called the Distributed Hash Table (DHT) [1] was invented
in the early 2000s, and included Plaxton’s algorithm [8], Pastry [10], CAN [9], Chord [13],
Koorde [6], Tapestry [15], and Kademlia [7]. Among them, Kademlia is the most widely
used in today’s Internet.

In Kademlia, each node is assigned an ID selected uniformly at random from {0, 1}¢
(ID space), where d is usually 128 [12] or 160 [3]. The distance between two nodes is
calculated by performing the bitwise exclusive or (XOR) operation over their IDs and
taking the result as a binary number. (In this work distance and closeness always refer to
the XOR distance between IDs.)

Roughly speaking, a Kademlia node keeps a table of a few other nodes (neighbors)
whose distances are sufficiently diverse. So when a node searches for an ID, it always has
some neighbors close to its target. By inquiring of these neighbors, and these neighbors’
neighbors, and so on, the node that is closest to the target ID in the network will be found,
eventually. Other DHTs work in similar ways. The main differences are how distance is
defined and how neighbors are chosen. For a more detailed survey of DHTs, see [1].

2. THE RANDOM ID MODEL

This section briefly reviews the Random ID Model for Kademlia as defined in [2].
Letd > log, n be the length of n binary IDs X1, ..., X,, chosen uniformly at random from

Address correspondence to Xing Shi Cai, McConnell Engineering Building, Room 318, 3480 University
Street, McGill University, Montreal, Quebec, Canada, H3A OE9. Email: xingshi.cai @mail.mcgill.ca
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uinm.

572

ANALYSIS OF KADEMLIA FOR RANDOM IDs 573

{0, 1}¢ without replacement. Consider n nodes indexed by i € {1, ..., n}. Let X; be the ID
of node i.
Given two IDs x = (xq, ..., x4),y = (31, ..., Ya), their XOR distance is defined by
d

S(x,y) =Y (x; ®yj) x 2",

Jj=1

where @ is the XOR operator

1 ifu#v,

udv= .
0 otherwise.

Let ¢(x, y) be the length of the common prefix of x and y. The n nodes can be
partitioned into d + 1 parts by their common prefix length with x via

Sx,jHy={i:1<i<n, lx,X;)=j}, 0<j<d.

For each 1 < i < n, d tables (buckets) of size at most k are kept, where k is a fixed
positive integer. Buckets are indexed by j € {0,...,d — 1}. The bucket j is filled with
min{k, |S(X;, j)|} indices drawn uniformly at random from S(X;, j) without replacement.
Note that the first j bits of X, if s € S(X;, j), agree with the first j bits of X;, but the
(j + Dth bit is different.

Searching for y € {0, 1}¢ initiated at node i proceeds as follows. Given that £(y, X;) =
j, y can only be in S(X;, j). Thus, all indices from the bucket j of i are retrieved, say
i1, ..., i. From them, the one having the shortest distance to y is selected as i*. (In fact,
any selection algorithm would be sufficient for the results of this work.) Note that

Ly, X)) = max £y, Xi,)-

Thus the choice of i* does not depend on the exact distances from X;j, ..., X;; to y.
Therefore, instead of the XOR distance, only the length of common prefix is needed in the
following analysis of searching.

The search halts if y = X; or if the bucket is empty. In the latter case, X; is closest
to y among all nodes. Otherwise we continue from i*. Since £(y, X;+) > £(y, X;), the
maximal number of steps before halting is bounded by d. Let T; be the number of steps
before halting in the search of y when started from i (searching time). Then, T; = T;- + 1.

Treating X1, ..., X, as strings consisting of zeros and ones, they can be represented
by a tree data structure called trie [14]. The S(x, j)’s can be viewed as subtrees. Filling
buckets is equivalent to choosing at most k leaves from each of these subtrees. Fig. 1 gives
an example of an ID trie.

3. MAIN RESULTS

The structure of the model is such that nothing changes if X1, ..., X,,, y are replaced
by their coordinate-wise XOR with a given vector z € {0, 1}¢. This is a mere rotation of
the hypercube. Thus, it can be assumed, without loss of generality, that y = (1, 1, ..., 1),
the rightmost branch in the ID trie.

574 CAI AND DEVROYE

PR —

bucket 2 K ---

biicket 1 {-=rroreremmenes

et M bucket 0
buckets of z

Figure 1 An example of a Kademlia ID trie. Given an ID x = (1,0, 0), the trie is partitioned into subtrees
S(x,0), S(x, 1), and S(x, 2). Node x maintains a bucket for each of these subtrees, containing at most k nodes
from the corresponding subtree.

If d ~ clog,n for some ¢ > 1, the searching time is O(logn), which is un-
doubtedly a contributing factor in Kademlia’s success. If d = w(n), then it is not a
useful upper bound of searching time any longer. However, in some probabilistic sense,
T; can be much smaller than log, n—it can be controlled by the parameter k, which
measures the amount of storage consumed by each node. The aim of this work is to in-
vestigate finer properties of these random variables. In particular, the following theorem is
proved:

Theorem 3.1. Assume that d > logyn. Let k > 0 be a fixed integer. Let L denote
convergence in probability. Then,

T, , 1
- —, asn — oo,
logyn
ETy 1
- —, asn — oo,
logan 1t

where [y is a function of k only:

0 1 k
j=1

In particular, uy = 2.

ANALYSIS OF KADEMLIA FOR RANDOM IDs 575

In the rest of the article, we first show that once the search reaches a node that shares
a common prefix of length about logn with y, the search halts in o(logn) steps. Thus, it
suffices to prove Theorem 3.1 for the time that it takes for this event to happen. Then, we
show that the ID trie is well balanced with high probability. Thus, when # is a power of
2, we can couple the search in the original trie with a search in a trie that is a complete
binary tree. It proves the theorem for this special case. After that, we give a sketch of
how to deal with general n. At the end we briefly summarize some implications of the
theorem.

4. THE TAIL OF THE SEARCH TIME

To keep the notation simple, let m = log, n and note that m is not necessarily
integer-valued. Also, for analytic purposes, define

. . n 4
J:mmi]:F<m]

Since n/2’ > m* and n/2’*!" < m*,

J < log, 14 =m —4log,m < m, “.1)
m

J = logy — —1=m—4logym — 1. (4.2)
m

The importance of J follows from the fact that once the search reaches a node i with
£(X;,y) = J, it takes very few steps to finish. Let 7| be the number of search steps that
depart from a node in the set S(y, j) for some j < J, with the very first node in the search
being 1.

Lemma 4.1. Theorem 3.1 follows if

T, 1
- —, asn — oo.
logyn

Proof. Let 7" = T\ — T|. T counts steps of the search departing from a node in
UiZ) S(y. j). Thus

d—1
4
T/ <Y yse. o

j=J
Noting that

E[S(y, DI = 4.3)

2j+1’

576 CAI AND DEVROYE

by linearity of expectation,

d—1 d—1
ET <) P{S(y,)l = 1} < Y min{E|S(y, j)I, 1}
e j=J

d-1
< Z min { %, 1 } (by (4.3))

izJ

d—1 d—1 n
=2 A+ 2 e X i

j=J j=J

< 4log,log,n +2 (by (4.2)).
Thus, for all € > 0 fixed,

"

P{T”> I }< 1 — @))
clog, n =o0(1),
= &2 ~ elogyn

Therefore, T}/ log, n 0. For the expectation, note that

ET/ 1
- —, asn — 0o,
log, n Mk
by the lemma’s assumption and the fact that 7} /log, n < 1 < oo. U

5. GOOD TRIES AND BAD TRIES

Because the tail of the search does not matter, define a new partition S; of all nodes
by merging subtrees S(y, j) for j > J as follows:

j =

UL, S(y.i) ifj=1J.

Let N; = |S;|. It follows from (4.3) that

{S@J) if0<j<J,

20+ ifo<j < J,
Esz{n/ nbvsJ= (5.1)

nf2! it =1J,

or simply EN; = n/2U+D" 'where a A b & min{a, b}. Note that N; is hypergeometric

with parameters
24 24
n,———20 - ——__
20+DAJ 2(+DAJ

i.e., it corresponds to the selection of n balls without replacement from an urn of 24 balls,
of which 29 /2U+DA/ are white [5, chap. 6.3].

The analysis of 7| can be simplified if the N;’s are all close to their expectations. To
be precise, let @« = m /2 be the accuracy parameter. An ID trie is good, if

|N; —EN;| <« x EN;,

ANALYSIS OF KADEMLIA FOR RANDOM IDs 577

DAL

N.
0 1 2 '3

Figure 2 The approximate sizes of subtrees in a good trie.
forall 0 < j < J. Otherwise it is called bad.
Lemma 5.1. The probability that an ID trie is bad is o(1).

Proof. It follows from the union bound that

J J
P J[IN; —EN;| > a xEN;]t <> P{[IN; —EN;| > « x EN;]}
Jj=0 j=0
' Var(N;)
Z @ % EN,)? (by Chebyshev’s inequality)
J
EN;
< X:(; m (N is hypergeometric)
1 T i+l
D D UACRY)
j=0
J+2 n
<m’ x =o(1). (since — > m4)
n 27

The fact used here is that Var(N;) < Var(N}), where N’ is binomial (n, 1/2U+bATy For
the binomial, Var(N ;) < EN; =EN;. |

6. PROOF WHEN = IS A POWER OF 2

In this section, n is assumed to be a power of 2, i.e., m is an integer. The general case
is treated in the next section.

6.1. A Perfect Trie

Construct a coupled ID trie consisting of Yy, ..., Y, as follows. If N; > EN;, i.e
the size of the subtree S; is at least its expectation, let Y; = X; for the EN; smallest indices

578 CAI AND DEVROYE

in §;. After this preliminary coupling, some Y;’s are undefined. The indices i for which Y;
are undefined go into a global pool G of size

J
> max{N; — EN;, 0}.
j=0

For a good trie, the size of the pool is at most

J J
axEN;=a xE N; = an.

> i SN

— —

For a subtree S; of size N; < ENj, take E[N;] — N; indices i from G and assign Y;
a value, that is different from all other Y,’s, and that has £(Y;, y) A J = j. Subtrees of this
new trie have fixed sizes of

n

i : £(Y;,y)AJ =j}l =EN; = SG+DAT

0<j<lJ. 6.1)
A trie like this is called perfect. Indices i for which X; # Y;, i.e.,i € G, are called ghosts.
Other indices are called normal.

Next, refill the buckets according to the perfect trie, but keep buckets of normal
indices containing no ghosts unchanged. Observe that a search step departing at a normal
index i proceeds precisely the same in both tries if bucket j (with j = €(Y;, y)) of i does
not contain ghosts. Assuming that the original trie is good, the probability that a bucket that
corresponds to S; for some j < J contains a ghost is not more than ka. This is because
in the newly constructed perfect trie, the subtree S; contains no more than « proportion of
ghost nodes.

Let T} denote the number of search steps starting from node 1 via node i with
£(Y;, y) < J in the perfect trie. Then, [7}" # T|/] € B, where B is the event that, at least
one node in the buckets encountered during a search is a ghost. Let A be the event that the
trie is good. It follows from Lemma 5.1 that

P{T; # T(} <P(B} <P(B, A} +P{A} < J x ke +o(1) = o(1).
Therefore, Theorem 3.1 follows if

TF 1
= —, asn — 0o.
log,n

6.2. Filling the Buckets with Replacement

To deal with the problem that buckets are filled by sampling without replacement,
another coupling argument is needed. Let p; be the probability that the k items sampled
with replacement from a set of size n/2/*+! are not all distinctive. Observe that by the union

bound,
k\ 2/+1 k227
< .
(2) n ~ n

IA

Pj

ANALYSIS OF KADEMLIA FOR RANDOM IDs 579

If £(Y;, y) = j < J, then bucket j of i has k elements drawn without replacement from
S={s: L, y)=j+1}, 0<j<J.

Observe that

n n n n n
+ +oot =

IS1=2m + 375 27 Tl T o

Hence, with probability 1 — p;, the sampling has been carried out with replacement.

The coupling is as follows: for all i with £(Y;, y) = jandall0 < j < J, mark bucket
j of i with probability p;. When a bucket is marked, replace its entries with k new entries
drawn with replacement conditioned on the existence of at least one duplicate entry. In this
way, all bucket entries are for a sampling with replacement. Let the search time, starting
still from 1, be denoted by 77**. Let D be the event that, during the search, a marked bucket
is encountered. Observe that [7}* # T;*] € D. Therefore,

J-1 J-1 :
. - k>0 k20 2k?
P{T #T"} <PIDI <) pj<) — < —— < o =ol).
j=0 j=0
So, Theorem 3.1 follows if
- —, asn — oo.
logyn i

6.3. Analyzing 7;* Using a Sum of L.I.D. Random Variables

Let Ay = £(Y1, y). Assume that step ¢ of the search departs from node i and reaches
node i*. Let A; = £(Y;«, y) — £(Y;, y), i.e., A, represents the progress in this step. Then

t
Tl**:inf{t Y A= J}.
s=0

Due to the recursive structure of a perfect trie, A, Ay, ..., although not i.i.d., should have
very similar distributions. This intuition leads to the following analysis of 7;"*, by studying
a sum of i.i.d. random variables.

One observation allows us to deal with a truncated version of A;’s as follows:

Lemma 6.1. Let wy, wy, ... be a sequence of real numbers with tho w; = 00. Define
-1
W, = w, A (M—Zwy), r=0,1,2...,
s=0

where M is also a real number. Then

t t
inflt:ZwszM} :inf{t:zwsz},
s=0 s=0

where we define the infimum of an empty set to be co.

580 CAI AND DEVROYE

Proof. Let t = inf{r : Y _,w, > M}.If T = oo or t = 0, the lemma is trivially true.
So we assume 0 < 7 < 0co. By induction on ¢, one can show that w, = w, if t < 7. Since
0 < 7, we have wy = wy, which is the induction basis. If w, = w, forall0 <s <t —1
andt < 1, then

t—1 t—1
w[Zw,/\<M—ZwS>=w,/\<M—ZwS>:wt'
s=0 s=0

Therefore, Y :_,ws < M, if and only if }'_w, < M. O

Let A, = A, A (J — Y'Z4Ay). Tt follows from the previous lemma that

t
Tl**:inf{t:ZZSzJ},

s=0

which is quite convenient because the distribution of A, is easy to compute.

Assume again that step ¢ of the search departs from node i with £(Y;, y) = j < J.
Consider one item, say z, in bucket j of i. Recall that z is selected uniformly at random
from all indices r with £(r, y) > j 4 1. Thus, it follows from the structure of a perfect trie,
which is given by (6.1), that

T 1
P{Y,, y)=1s)= 2 =—, i+1<s<J,
ez, y) = s} S TR TS J
& o
2/n+2+2,%++2n—1+2% 2J—j_].

P, y)=J} =

Or shifted by —,

1
P{Z(Yz’y)_]ZS}ZE, 1§S<J—j,
. . 1
PUY) =20 =)} = 55
If truncated by J — j, we obtain
.) 1 .
P{(Z(Yz,y)—J)A(J—J)=S}=m, l<s=<J-—j

Note that this is exactly the distribution of a geometric (1/2) truncated by J — j.
Recall that among all the values of £(-, y) given by items in the bucket j of i, the
one chosen as the next stop of the search gives the maximum. Thus,

A= max {((Y.,y)—j}.

zebucket j

ANALYSIS OF KADEMLIA FOR RANDOM IDs 581

Let Z,, Z,, ... beii.d. geometric (1/2). Let V = max{Z, ..., Z;}. Then,

A=A AT =)
= max {(L(Y,,y)—)} AU —))

zebucket j

= max {(¢(Yo.y) = HAU =)

zebucket j
c . .
ZmaX{ZI/\(J_.])svzk/\(J_])}
=max{Zy,..., Zy} AN (J — J)
=VAWU-=]).
Let Vj be a geometric (1/2) minus one. Then Vy A d £ Ag. Let Vi, V5, ... be 1.i.d.

random variables distributed as V. Let V, = V, A J - Z;%) VS). Using induction and the
previous argument about A,, one can show that

t t
SVESR r=01,.... (6.2)
s=0 s=0

For the induction basis, note that

Ao=AoAJEVoAD AT =VonJ =V,

Assume that Y ;f) V. £ i:l A, for some ¢ > 0. Then, forall0 <i < J,

t
s

i t—1
=> PV, /\(J—j)zi—j}P{sz j}
j=0

|l

Thus (6.2) is proved. It then follows from Lemma 6.1 and (6.2) that

t—1

=§P![V,:i—zvj} N [Z}V

s=0

t t
Tl**éinf{t:ZVsZJ}:inf{t:ZVszl},
s=0 s=0

which makes 7" much easier to analyze.
Because V < s if and only if Zj, ..., Z; are all smaller than s,

k 1 *
P{V<s}:HP{Zr<s}:(l—2s_l) .
r=1

582 CAI AND DEVROYE

Therefore, by definition of pi,

o) 00 1 k
EV:ZP{st}=ZI—(1—2S_1) = .
s=1

s=1

Readers familiar with renewal theory [4, chap. 4.4] can immediately see that

T T J | 1

fd X _ — = s
log, n J logon EV

which completes the proof of Theorem 3.1 for n, which is power of 2. The following
Lemma gives more details.

Lemma 6.2. Ift =inf{r:) _, Vi > M},

T P
-
M/EV

1, as M — oo.

Proof. Because Vj + 1 is geometric (1/2),
1 k
P{V0+1§s}=1—§z (1——) =P{V| <s}.

In other words, Vy < V|, where < denotes stochastical ordering. Let

t t
ﬂ:inf{t:ZVszM}, r”:inf{t:ZVxHZM}zt/—l.

s=1 s=0

Then, 7”7 < 7 and t < t’. By the strong law of large numbers, both t//M and t”/M
converge to 1/EV almost surely. Therefore, t/M 21 /EV. O

7. PROOF FOR THE GENERAL CASE

In this section, the proof of Theorem 3.1 for n, an arbitrary integer, is only sketched
because most methods used here are very similar to those in the previous section.

7.1. An Almost Perfect Trie

When n is not power of 2, EN; = n/2U+D"/ s not guaranteed to be an integer. So,
a perfect trie is no longer well defined. However, let us define
[EN;] = 551 0<j<lJ,
n=Y b ==Y [j=1.

Then, the coupling argument (Section 6.1) for perfect tries can still be applied, now replacing
EN j by b je

b; =

ANALYSIS OF KADEMLIA FOR RANDOM IDs 583

In this way, a trie consisting of Y7, . . ., ¥, can be constructed, with its subtrees having
fixed sizes of

i Y) AT = j} = by (7.1)

If the original trie is good, then the number of indices i for which X; # Y;, called ghosts,
is bounded by

J—-1
> o xEN; + (@EN; + J) =an+ J.
j=0

A trie with these properties is called almost perfect.

Let T} denote the number of search steps starting from node 1 via node i with
€(Y;, y) < J in the almost perfect trie. If 7} and 7} are coupled as they were in Section 6.1,
then [T}* # T]] € B, where B is the event that, at least one node in the buckets encountered
during a search is a ghost. Let A be the event that, the trie is good, which has probability
o(1) by Lemma 5.1. One can check that

PUT#E}st}waJn+PMﬂsmmm4”+§g+mnzmn
Again, Theorem 3.1 follows if

T p 1
- —, asn — oo.
logyn

7.2. Filling the Buckets with Replacement

The coupling argument used in Section 6.2 to deal the problem that buckets are filled
by sampling without replacement can be adapted for an almost perfect trie. Let p; be the
probability that &k items sampled without replacement from a set of size bj(+ --- + by
have conflicts. Observe that, for n large enough,

n .
bj+1+-~-+bJZF—(J+1)2

22

Thus, it follows from the union bound that

(k) 1 K2 2/+1
pPj = =< < .
2 bj+1+"'+bj 2(bj+]+"'+bj) n

Let the search time of sampling without replacement be 7;**. Let 7" and T}" be
coupled as they were in Section 6.2. Let D be the event that, during the search, an unmarked
bucket is encountered. Since [T} # 7] € D, one can check that

e 4K
P{T} # 77"} <PD} <) pj < — =o(D).
j=0

584 CAI AND DEVROYE

So, once again, Theorem 3.1 follows if

Tl** » 1
- — asn — 0o.
log,n ik

7.3. Analyzing 7;** Using a Sum of I.1.D. Random Variables

Consider two partitions of a line segment L of length n. From left to right, cut L into
J + 1 consecutive intervals By, ..., By, with |B;| = b;, where |a| denotes the length of
a. Again, from left to right, cut L into infinite many consecutive intervals Bé, Bi, ..., with
|B’i| =1/2/%1,

Observe that, for 0 < j < J, B; and B} do not completely match because B; is
wider than BJ’-. However, since |B;| — IB}I < 1,for0 < j < J, the distance between the
right endpoints of B; and B} is at most J. Therefore, the total length of unmatched regions,
which are are called death zones, is O(J?).

Let Ag, Ay, ... and Vp, Vi, ... be the same as in Section 6.3. A coupling between
them can be constructed as follows: pick one point zy uniformly at random from the entire
L. If zo falls in interval B;, let Ay = j. If zo falls in interval B}, let Vo = j. Note that

Ao £ £(Y1, y). Also note that since

P(Vo=jl=PlzeB)}=—L=— i=01,...,

Vo is geometric (1/2) minﬂs one, as desired.
Assume that Zi;é Ay = j. Pick k points from the line segment starting from B} 41
to the right endpoint of L. Let V; = s such that the rightmost one of the k points falls into

, .
B’ . Since

k
P{V, < s} =P{allk points are in B, ..., B}, ,} = (1 — 2:1) ,
V; is again the maximum of k i.i.d. geometric (1/2).
If not all the & points are in the range of B, 1, ..., By, keep picking more points until
k of them are within this region. Let A, = s such that the rightmost of the these k points
falls into B;. Chosen in this way, A, has the same distribution as the amount of progress
one makes at step ¢ of the search. Therefore,

v

t
T £ inf{t: A, J}.

It follows from Lemma 6.2 that, if

t
Tl***zinf{t:zvszl},

then 77" /log, n LY 1/ asn — oo.

ANALYSIS OF KADEMLIA FOR RANDOM IDs 585

Let E be the event that, at some step of the previous coupling, at least one of the first
k chosen points falls into death zones. Note that [7}* # T;"**] C E. Therefore,

J—1 2 3

T # T7} <PAE} <) ki = o = o(D).

j=0

So, the proof of Theorem 3.1 when is an arbitrary integer is complete.

8. CONCLUSIONS

In a Kademlia system, one often searches for a random ID. Although 7 is the
searching time for a fixed ID, Theorem 3.1 still holds if the target y is chosen uniformly at
random from {0, 1}¢.

If d ~ clog,n with ¢ > 2, there is no essential difference between sampling the
n IDs with or without replacement from {0, 1}¢ because the probability of a collision in
sampling with replacement is o(1). This is the well-known Birthday Problem. Since, in
practice, a Kademlia system hands out a new ID without checking its uniqueness, it is wise
to have ¢ > 2, because then, a randomly generated ID clashes with any existing ID with
very small probability.

Recall that p, = Zjil 1 — (1 —1/2/~1)*. Because the terms in the sum decrease in
J, ix can be bounded:

o 1\ H,
Msz l—|\1-5) dx=—,
0 2% log?2

</°c1 o kd b=y
—{1—= dx = —+1.
M=, 2 log 2

Here, log w denotes the natural logarithm of w, and H; = Zle 1/s is the kth harmonic
number. Since Hy; ~ logk,

. . Hy
lim = lim ——
k—00 log2 k k—00 10g2 X 10g2 k

Thus, T:/log, n S log, k/pr = 1 4 ox(1). Since Tl/(% log, n) £ 1 when k = 1, an
increase in storage by a factor of k results in a modest decrease in searching time by a factor
of log(k)/(21og2).

In [2], it was proven that, if X| = x1, ..., X,, = x, for fixed x|, ..., x,, then

(log 2)
sup supsupET; < | —— +o(1)) log, n.
X1 yeens Xy 0 y Hk

Thus, Theorem 3.1 implies that this upper bound is not far from tight when k is large.
Table 1 lists the numeric values of 1/u; and log(2)/Hy fork =1, ..., 10.

If k = ®(ogn), then T; ~ logn/loglogn in probability as n — oo. The proof of
Theorem 3.1 is for fixed k only, but one can verify that, for such modest increase in k as a
function of n, only minor changes are needed. More specifically, to make the coupling with
searching in a perfect trie work, all we need to do is redefine J = min{j : 1/2/*' < m’}
and @ = m 3. And Lemma 6.2 needs to use a version of the weak law of large numbers [4,

586 REFERENCES
k 1/ log(2)/ Hy
1 0.5000000000 0.6931471806
2 0.3750000000 0.4620981204
3 0.3181818182 0.3780802804
4 0.2853260870 0.3327106467
5 0.2635627530 0.3035681083
6 0.2478426396 0.2829172166
7 0.2358018447 0.2673294911
8 0.2261891923 0.2550344423
9 0.2182781689 0.2450176596
10 0.2116151616 0.2366523364

Table I Numeric values of 1/ and log(2)/ H

thm. 2.2.4], instead of the strong law of large numbers, to deal with the fact that EV is not
a constant anymore.

If k = n®D, we can show that T} = ®(1) in probability. Note that, here, only an
upper bound of 7; is needed. Assuming that the ID trie is good, it can be proved that, in
each search step, the length of the common prefix of the current node and the target node
increases by at least clogn with high probability, where ¢ is a constant depending on k.
Thus, after at most O(1) steps, the current node and the target node are both in a subtree of
size at most k. Then, the search terminates after one more step.

FUNDING
Research of the authors was supported by NSERC.

REFERENCES

[1] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and 1. Stoica. “Looking Up
Data in P2P Systems.” Communications of the ACM 46:2 (2003), 43-48.

[2] X. S. Cai and L. Devroye. “A Probabilistic Analysis of Kademlia Networks.” In
Algorithms and Computation, LNCS 8283: 711-721. Berlin, Heidelberg: Springer,
2013.

[3] S. A. Crosby and D. S. Wallach. “An Analysis of BitTorrent’s Two Kademlia-Based
DHTs.” Technical report. Houston, TX: Rice University, 2007.

[4] R. Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge, UK: Cambridge University Press, 2010.

[5] N.Johnson, A. Kemp, and S. Kotz. Univariate Discrete Distributions. Hoboken, NJ,
USA: Wiley, 2005.

[6] M. F. Kaashoek and D. R. Karger. “Koorde: A Simple Degree-Optimal Distributed
Hash Table.” In Peer-to-Peer Systems II, pp. 98—107. Berlin, Heidelberg: Springer,
2003.

[7]1 P. Maymounkov and D. Mazieres. “Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric.” In Peer-to-Peer Systems, LNCS 2429: 53-65. Berlin,
Heidelberg: Springer, 2002.

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

ANALYSIS OF KADEMLIA FOR RANDOM IDS 587

C. G. Plaxton, R. Rajaraman, and A. W. Richa. “Accessing Nearby Copies of Repli-
cated Objects in a Distributed Environment.” Theory of Computing Systems 32:3
(1999), 241-280.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A Scalable Content-
Addressable Network.” SIGCOMM Computer Communication Review 31:4 (2001),
161-172.

A. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems.” In Middleware 2001, LNCS 2218:
329-350. Berlin, Heidelberg: Springer, 2001.

R. Schollmeier. “A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications.” In Proceedings of Ist International
Conference on Peer-to-Peer Computing, pp. 101-102. IEEE, 2001.

M. Steiner, T. En-Najjary, and E. W. Biersack. “A global view of Kad.” In Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC *07, pp. 117—
122, New York, NY, USA: ACM, 2007.

L. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications.” SIGCOMM Computer
Communication Review 31:4 (2001), 149-160.

W. Szpankowski. Average Case Analysis of Algorithms on Sequences. Hoboken, NJ,
USA: Wiley, 2011.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
“Tapestry: A Resilient Global-Scale Overlay for Service Deployment.” IEEE Journal
on Selected Areas in Communications 22:41-53.

