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High-Order Random Walks
and Generalized Laplacians
on Hypergraphs
Linyuan Lu and Xing Peng

Abstract. Despite the extreme success of spectral graph theory, there are relatively few
papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians
for regular hypergraphs and showed some useful applications. Other researchers have
treated hypergraphs as weighted graphs and then studied the Laplacians of the corre-
sponding weighted graphs. In this paper, we aim to unify these very different versions of
Laplacians for hypergraphs. We introduce a set of Laplacians for hypergraphs through
studying high-order random walks on hypergraphs. We prove that the eigenvalues of
these Laplacians can effectively control the mixing rate of high-order random walks,
the generalized distances/diameters, and the edge expansions.

1. Introduction

Many complex networks (such as spatial networks [Demir et al. 08], cellular
networks [Klamt et al. 09], and biomolecular networks [Zhang 07]) have richer
structures than graphs can have. Inherently, they have hypergraph structures:
interconnections often cross multiple nodes. Treating these networks as graphs
causes a loss of structure. Nonetheless, it is still popular to use graph tools to
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study these networks; one of them is the Laplacian spectrum. Let G be a graph
on n vertices. The Laplacian L of G is the n × n matrix I − T−1/2AT−1/2 ,
where A is the adjacency matrix and T is the diagonal matrix of degrees. Let
λ0 , λ1 , . . . , λn−1 be the eigenvalues of L, indexed in nondecreasing order. It is
known that 0 ≤ λi ≤ 2 for 0 ≤ i ≤ n − 1. If G is connected, then λ1 > 0. The
first nonzero Laplacian eigenvalue λ1 is related to many graph parameters, such
as the mixing rate of random walks, the graph diameter, the neighborhood
expansion, the Cheeger constant, the isoperimetric inequalities, expander
graphs, and quasirandom graphs [Aldous and Fill 12, Alon 86, Chung 89, Chung
et al. 94, Chung 97, Lawler and Sokal 88, Mihail 89].

In this paper, we define a set of Laplacians for hypergraphs. Laplacians for reg-
ular hypergraphs were first introduced in [Chung 93], which used the homology
approach. The first nonzero Laplacian eigenvalue can be used to derive several
useful isoperimetric inequalities. It seems hard to extend Chung’s definition to
general hypergraphs. There are some researchers who have treated a hypergraph
as a multiedge graph and then defined its Laplacian to be the Laplacian of a cor-
responding multiedge graph. For example, it was shown in [Rodŕıguez 09] that
the approach above has some applications to bisections, the average minimal cut,
the isoperimetric number, the max-cut, the independence number, the diameter,
etc. Rodŕıguez’s approach was introduced in [Li 04]; Ramanujan hypergraphs
were defined in [Li and Solé 96]. Another direction for studying the spectra of
adjacency matrices of hypergraphs is to use the notion of tensor product. This
direction was taken in [Friedman and Wigderson 95] to investigate spectra of
adjacency matrices of 3-uniform hypergraphs. Recently, spectra of adjacency hy-
permatrices of r-uniform hypergraphs were considered in [Cooper and Dutle 12].

What are the “right” Laplacians for hypergraphs? To answer this question,
let us recall how the Laplacian was introduced in graph theory. One approach
uses a geometric/homological analogue, where the Laplacian is defined as a self-
adjoint operator on the functions over vertices. Another approach uses random
walks, where the Laplacian is the symmetrization of the transition matrix of
the random walk on a graph. In [Chung 93], the first approach was taken, and
Chung defined her Laplacians for regular hypergraphs. In this paper, we take the
second approach and define the Laplacians through high-order random walks on
hypergraphs.

A high-order walk on a hypergraph H can be roughly viewed as a sequence
of overlapped oriented edges F1 , F2 , . . . , Fk . For 1 ≤ s ≤ r − 1, we say that
F1 , F2 , . . . , Fk is an s-walk if |Fi ∩ Fi+1 | = s for each i in {1, 2, 3, . . . , k − 1}.
For example, a Hamiltonian s-cycle is a special s-walk that covers each ver-
tex exactly once. There are many papers [Dudek and Frieze 11, Dudek and
Frieze 12, Frieze 10, Hàn and Schacht 99, Katona and Kierstead 99, Keevash
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et al. 12, Kühn et al. 12, Kühn and Osthus 06, Rödl et al. 06, Rödl et al. 08]
studying Hamiltonian s-cycles in hypergraphs. A detailed definition of high-order
random walks will be given later.

From this rough view of high-order random walks, if we refer to the intersection
of two consecutive edges as a stop, then it is possible that there is some vertex
from the stop contained in more than two consecutive edges when s > r/2, so
we need to specify the edge to which the vertex from the stop belongs. Hence we
need to assume a stop to be an ordered set of s vertices, which causes an s-walk
to be reversible when 1 ≤ s ≤ r/2 and irreversible when s > r/2. Therefore, in
the definition of the sth Laplacian for r-uniform hypergraphs, we will split the
definition into two cases. The loose case is that in which 1 ≤ s ≤ r/2; in this case
we will reduce the sth Laplacian of a hypergraph to the Laplacian of an associated
weighted undirected graph. The tight case is that in which r/2 < s ≤ r − 1; in
this case we will reduce the sth Laplacian of a hypergraph to the Laplacian of
an associated Eulerian directed graph.

Before we give the definition of the sth Laplacian of a hypergraph, we need to
review necessary results on the Laplacian of a weighted undirected graph and the
Laplacian of an Eulerian directed graph. The choice of s enables us to define a
set of Laplacian matrices L(s) for H. For s = 1, our definition of Laplacian L(1) is
the same as the definition in [Rodŕıguez 09]. For s = r − 1, while we restrict our
attention to regular hypergraphs, our definition of the Laplacian L(r−1) is similar
to the definition in [Chung 93]. We will discuss the relationship between these no-
tions in the final section of this paper. Our definition of Laplacians is also closely
related to the singular values used in the unpublished work [Butler unpubl.].

In this paper, we show several applications of the Laplacians of hypergraphs,
such as the mixing rate of high-order random walks, generalized diameters, and
edge expansions. Our approach allows users to select a “right” Laplacian to fit
their special requirements.

The rest of the paper is organized as follows. In Section 2, we review and prove
some useful results on the Laplacians of weighted graphs and Eulerian directed
graphs. The definition of Laplacians for hypergraphs will be given in Section 3.
We will prove some properties of the Laplacians of hypergraphs in Section 4, and
consider several applications in Section 5. In the final section, we will comment
on future directions.

2. Preliminary Results

In this section, we review some results on Laplacians of weighted graphs and Eule-
rian directed graphs. The results on Laplacians of weighted graphs will be applied
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to the sth Laplacians of hypergraphs for 1 ≤ s ≤ r/2, and those on Laplacians
of Eulerian directed graphs will be applied to the sth Laplacians of hypergraphs
for r/2 < s ≤ r − 1.

In this paper, we frequently switch domains from hypergraphs to weighted
(undirected) graphs and/or to directed graphs. To reduce confusion, we use the
following conventions throughout this paper. We denote a weighted graph by
G, a directed graph by D, and a hypergraph by H. The sets of vertices are
denoted by V (G), V (D), and V (H), respectively. (Whenever it is clear from the
context, we will write such a set as V for short.) The edge sets are denoted by
E(G), E(D), and E(H), respectively. The degrees d∗ and volumes vol(∗) are
defined separately for the weighted graph G, for the directed graph D, and for
the hypergraph H. Readers are warned to interpret them carefully depending on
the context.

For a positive integer s and a vertex set V , let Vs be the set of all (ordered)
s-tuples consisting of s distinct elements in V . Let

(
V
s

)
be the set of all unordered

(distinct) s-subsets of V .
Let 1 be the row (or the column) vector with all entries of value 1, and let I

be the identity matrix. For a row (or column) vector f , the norm ‖f‖ is always
the L2-norm of f .

2.1. Laplacians of Weighted Graphs

A weighted graph G on the vertex set V is an undirected graph associated with
a weight function w : V × V → R ≥0 satisfying w(u, v) = w(v, u) for all u and v

in V (G). Here we always assume w(v, v) = 0 for every v ∈ V .
A simple graph can be viewed as a special weighted graph such that each edge

has weight 1 and each non-edge has weight 0. Many concepts of simple graphs
are naturally generalized to weighted graphs. If w(u, v) > 0, then u and v are
adjacent, written as x ∼ y. The graph distance d(u, v) between two vertices u and
v in G is the minimum integer k such that there is a path u = v0 , v1 , . . . , vk = v in
which w(vi−1 , vi) > 0 for 1 ≤ i ≤ k. If no such k exists, then we let d(u, v) = ∞.
If the distance d(u, v) is finite for every pair (u, v), then G is connected. For a
connected weighted graph G, the diameter (denoted by diam(G)) is the largest
value of d(u, v) among all pairs of vertices (u, v).

The adjacency matrix A of G is defined as the matrix of weights, i.e., A(x, y) =
w(x, y) for all x and y in V . The degree dx of a vertex x is

∑
y w(x, y). Let T be the

diagonal matrix of degrees in G. The Laplacian L is the matrix I − T−1/2AT−1/2 .
Let λ0 , λ1 , . . . , λn−1 be the eigenvalues of L, indexed in nondecreasing order. It
is known [Chung 97] that 0 ≤ λi ≤ 2 for 0 ≤ i ≤ n − 1. If G is connected, then
λ1 > 0.
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From now on, we assume that G is connected. The first nontrivial Laplacian
eigenvalue λ1 is the most useful one. It can be written in terms of the Rayleigh
quotient as follows (see [Chung 97]):

λ1 = inf
f⊥T 1

∑
x∼y (f(x) − f(y))2w(x, y)∑

x f(x)2dx
. (2.1)

Here the infimum is taken over all functions f : V → R , which is orthogonal to
the degree vector 1T = (d1 , d2 , . . . , dn ). Similarly, the largest Laplacian eigen-
value λn−1 can be defined in terms of the Rayleigh quotient as follows:

λn−1 = sup
f⊥T 1

∑
x∼y (f(x) − f(y))2w(x, y)∑

x f(x)2dx
. (2.2)

Note that scaling the weights by a constant factor will not affect the Laplacian.
A weighted graph G is complete if w(u, v) = c for some constant c such that c > 0,
independent of the choice of (u, v) with u �= v. We say that G is bipartite if there
is a partition V = L ∪ R such that w(x, y) = 0 for all x, y ∈ L and all x, y ∈ R.

We have the following facts (see [Chung 97]):

1. 0 ≤ λi ≤ 2 for each 0 ≤ i ≤ n − 1.

2. The number of 0 eigenvalues equals the number of connected components
in G. If G is connected, then λ1 > 0.

3. λn−1 = 2 if and only if G has a connected component that is a bipartite
weighted subgraph.

4. λn−1 = λ1 if and only if G is a complete weighted graph.

It turns out that λ1 and λn−1 are related to many graph parameters, such as
the mixing rate of random walks, the diameter, the edge expansions, and the
isoperimetric inequalities.

A random walk on a weighted graph G is a sequence of vertices v0 , v1 , . . . , vk

such that the conditional probability Pr(vi+1 = v | vi = u) is equal to w(u, v)/du

for 0 ≤ i ≤ k − 1. A vertex probability distribution is a map f : V → R such that
f(v) ≥ 0 for each v in G and

∑
v∈V f(v) = 1. It is convenient to write a vertex

probability distribution as a row vector. A random walk maps a vertex proba-
bility distribution to a vertex probability distribution through multiplying by a
transition matrix P from the right, where P (u, v) = w(u, v)/du for each pair of
vertices u and v. We can write P = T−1A = T−1/2(I − L)T 1/2 . The spectral gap
λ̄(P ), denoted by λ̄ for short, is max{|1 − λ1 |, |1 − λn−1 |}. Let π(u) = du/vol(G)
for each vertex u in G. Observe that π is the stationary distribution of the ran-
dom walk, i.e., πP = π. A random walk is mixing if limi→∞f0P

i = π for every
initial vertex probability distribution f0 . It is known that a random walk is always
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mixing if G is connected and not a bipartite graph. To overcome the difficulty re-
sulting from being a bipartite graph (where λn−1 = 2) for 0 ≤ α ≤ 1, we consider
an α-lazy random walk, whose transition matrix Pα is given by Pα (u, u) = α for
each u and Pα (u, v) = (1 − α)w(u, v)/du for each pair of vertices u and v with
u �= v. Note that the transition matrix is

Pα = αI + (1 − α)T−1A = T−1/2(I − (1 − α)L)T 1/2 .

Let

Lα = T 1/2PαT−1/2 = I − (1 − α)L
and

λ̄α = max{|1 − (1 − α)λ1 |, |1 − (1 − α)λn−1 |}.
Since Lα is a symmetric matrix, we have

λ̄α = max
u⊥T 1 / 2 1

‖Lαu‖
‖u‖ .

It turns out that the mixing rate of an α-lazy random walk is determined
by λ̄α .

Theorem 2.1. For 0 ≤ α ≤ 1, the vertex probability distribution fk of the α-lazy
random walk at time k converges to the stationary distribution π in probability.
In particular, we have∥∥∥(fk − π)T−1/2

∥∥∥ ≤ λ̄k
∥∥∥(f0 − π)T−1/2

∥∥∥ .

Here f0 is the initial vertex probability distribution.

Proof. Notice that fk = f0P
k
α and (f0 − π)T−1/2 ⊥ 1T 1/2 . We have∥∥∥(fk − π)T−1/2

∥∥∥ =
∥∥∥(f0P

k
α − πPk

α

)
T−1/2

∥∥∥ =
∥∥∥(f0 − π)Pk

α T−1/2
∥∥∥

=
∥∥∥(f0 − π)T−1/2Lk

α

∥∥∥ ≤ λ̄k
α

∥∥∥(f0 − π)T−1/2
∥∥∥ .

This completes the proof.

For each subset X of V (G), the volume vol(X) is
∑

x∈X dx . If X = V (G), then
we write vol(G) instead of vol(V (G)). We have

vol(G) =
n∑

i=1

di = 2
∑
u∼v

w(u, v).
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If X̄ is the complement of X, then we have vol(X̄) = vol(G) − vol(X). For every
pair of subsets X and Y of V (G), the distance d(X,Y ) between X and Y is
min{d(x, y) : x ∈ X, y ∈ Y }.

Theorem 2.2. [Chung 89, Chung 97] In a weighted graph G, for X,Y ⊆ V (G) with
distance at least 2, we have

d(X,Y ) ≤
⌈
log

√
vol(X̄)vol(Ȳ )
vol(X)vol(Y )

/
log

λn−1 + λ1

λn−1 − λ1

⌉
.

A special case of Theorem 2.2 is that both X and Y are single vertices, which
gives an upper bound on the diameter of G.

Corollary 2.3. [Chung 97] If G is not a complete weighted graph, then we have

diam(G) ≤
⌈
log

vol(G)
δ

/
log

λn−1 + λ1

λn−1 − λ1

⌉
,

where δ is the minimum degree of G.

For X,Y ⊆ V (G), let E(X,Y ) be the set of edges between X and Y . Namely,
we have

E(X,Y ) = {(u, v) : u ∈ X, v ∈ Y and uv ∈ E(G)}.
We have the following theorem.

Theorem 2.4. [Chung 89, Chung 97] If X and Y are two subsets of V (G), then we
have ∣∣∣∣|E(X,Y )| − vol(X)vol(Y )

vol(G)

∣∣∣∣ ≤ λ̄ ·
√

vol(X)vol(Y )vol(X̄)vol(Ȳ )
vol(G)

.

2.2. Laplacians of Eulerian Directed Graphs

The Laplacian of a general directed graph was introduced in [Chung 05,
Chung 06]. The theory is considerably more complicated than the one for undi-
rected graphs, but when we consider a special class of directed graphs, namely
Eulerian directed graphs, it turns out to be quite neat.

Let D be a directed graph with vertex set V (D) and edge set E(D). A di-
rected edge from x to y is denoted by an ordered pair (x, y) or by x → y. The
out-neighborhood Γ+(x) of a vertex x in D is the set {y : (x, y) ∈ E(D)}. The
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out-degree d+
x is |Γ+(x)|. Similarly, the in-neighborhood Γ−(x) is {y : (y, x) ∈

E(D)}, and the in-degree d−x is |Γ−(x)|. A directed graph D is Eulerian if d+
x = d−x

for every vertex x. In this case, we simply write dx = d+
x = d−x for each x. For a

vertex subset S, the volume of S, denoted by vol(S), is
∑

x∈S dx . In particular,
we write vol(D) =

∑
x∈V dx .

Eulerian directed graphs have many nice properties. For example, an Eulerian
directed graph is strongly connected if and only if it is weakly connected.

The adjacency matrix of D is a square matrix A satisfying A(x, y) = 1 if
(x, y) ∈ E(D) and A(x, y) = 0 otherwise. Let T be the diagonal matrix with
T (x, x) = dx for each x ∈ V (D). Let �L = I − T−1/2AT−1/2 , i.e.,

�L(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x = y,

−1/
√

dxdy if x → y,

0 otherwise.

(2.3)

Note that �L is not symmetric. We define the Laplacian L of D to be the
symmetrization of �L, that is,

L =
�L + �L′

2
.

Since L is symmetric, its eigenvalues are real and can be listed as λ0 , λ1 , . . . , λn−1

in nondecreasing order. Note that λ1 can also be written in terms of the Rayleigh
quotient (see [Chung 05]) as follows:

λ1 = inf
f⊥T 1

∑
x→y (f(x) − f(y))2

2
∑

x f(x)2dx
. (2.4)

In [Chung 06], there is a general theorem on the relationship between λ1 and
the diameter. After restricting to Eulerian directed graphs, it can be stated as
follows.

Theorem 2.5. [Chung 06] Suppose D is a connected Eulerian directed graph. Then
the diameter of D satisfies

diam(D) ≤
⌊

2 log(vol(G)/δ)
log 2

2−λ1

⌋
+ 1,

where λ1 is the first nontrivial eigenvalue of the Laplacian matrix, and δ is the
minimum degree min{dx | x ∈ V (D)}.

The main idea in the proof of this theorem is to use α-lazy random walks on
D. A random walk on an Eulerian directed graph D is a sequence of vertices
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v0 , v1 , . . . , vk such that for 0 ≤ i ≤ k − 1, the conditional probability Pr(vi+1 =
v | vi = u) equals 1/du for each v ∈ Γ+(u) and is 0 otherwise. For 0 ≤ α ≤ 1, α-
lazy random walks are defined similarly. The transition matrix Pα of an α-lazy
random walk satisfies

Pα = αI + (1 − α)T−1A = T−1/2(I − (1 − α) �L)T 1/2 .

In [Chung 05], only 1/2-lazy random walks are considered. Here we prove some
results on α-lazy random walks for α ∈ [0, 1).

Let π(u) = du/vol(D) for each u ∈ V (D). Note that π is the stationary distri-
bution, i.e., πPα = π. Let

Lα = αI + (1 − α)T−1/2AT−1/2 = I − (1 − α) �L = T 1/2PαT−1/2 .

The key observation is that there is a unit vector φ0 such that φ0 is a row
eigenvector Lα and φT

0 is a column eigenvector of Lα for the largest eigenvalue
1. Here let

φ0 = 1 · T 1/2

vol(D)
=

1
vol(G)

(√
d1 , . . . ,

√
dn

)
.

We have

φ0Lα = φ0 and Lαφ′
0 = φ′

0 .

Let φ⊥
0 be the orthogonal complement of φ0 in Rn . It is easy to check that Lα

maps φ⊥
0 to φ⊥

0 . Let σα be the spectral norm of Lα when restricted to φ⊥
0 . An

equivalent definition of σα is the second-largest singular value of Lα , i.e.,

σα = max
f⊥φ ′

0

‖Lαf‖
‖f‖ .

Lemma 2.6. We have the following properties for σα :

1. For every β ∈ φ⊥
0 , we have ‖Lαβ‖ ≤ σα‖β‖.

2. (1 − λ1)2 ≤ σ2
0 ≤ 1.

3. σ2
α ≤ α2 + 2α(1 − α)λ1 + (1 − α)2σ2

0 .

Proof. Item 1 is from the definition of σα . Since the largest eigenvalue of Lα is 1, we
have σα ≤ 1. In particular, σ2

0 ≤ 1. Note that L0 = T−1/2AT−1/2 . Let f = gT 1/2 .
It follows that

σ2
0 = sup

f⊥φ ′
0

‖L0f‖2

‖f‖2 = sup
g⊥T 1

g′A′T−1Ag

g′Tg
.
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Choose g ∈ (T1)⊥ such that the Rayleigh quotient (2.4) reaches its minimum
at g, i.e.,

λ1 =

∑
x→y (g(x) − g(y))2

2
∑

x g(x)2dx
.

We have

g′A′T−1Ag

g′Tg
=

∑
x

1
dx

(∑
y∈Γ+ (x) g(y)

)2

∑
x dxg(x)2

=

∑
x dxg(x)2 ∑

x
1
dx

(∑
y∈Γ+ (x) g(y)

)2

(
∑

x dxg(x)2)2

≥
(∑

x g(x)
∑

y∈Γ+ (x) g(y)
)2

(
∑

x dxg(x)2)2

=

(∑
x g(x)

∑
y∈Γ+ (x) g(y)∑

x dxg(x)2

)2

= (1 − λ1)2 .

In the last step, we have used the following argument:∑
x g(x)

∑
y∈Γ+ (x) g(y)∑

x dxg(x)2 =
1
2

∑
x→y

(
g(x)2 + g(y)2 − (g(x) − g(y))2

)
∑

x dxg(x)2

= 1 −
∑

x→y (g(x) − g(y))2

2
∑

x dxg(x)2 = 1 − λ1 .

Since σ0 is the maximum over all g ⊥ T1, we get (1 − λ1)2 ≤ σ2
0 .

For item 3, we have

σ2
α = sup

f⊥φ ′
0

‖Lαf‖2

‖f‖2 = sup
g⊥T 1

g′P ′
αTPαg

g′Tg

≤ α2 + α(1 − α) sup
g⊥T 1

g′(A + A′)g
g′Tg

+ (1 − α)2 sup
g⊥T 1

g′A′T−1Ag

g′Tg

= α2 + 2α(1 − α)(1 − λ1) + (1 − α)2σ2
0 .

This completes the proof.

Theorem 2.7. For 0 < α < 1, the vertex probability distribution fk of an α-lazy ran-
dom walk on an Eulerian directed graph D at time k converges to the stationary
distribution π in probability. In particular, we have∥∥∥(fk − π)T−1/2

∥∥∥ ≤ σk
α

∥∥∥(f0 − π)T−1/2
∥∥∥ .

Here f0 is the initial vertex probability distribution.
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The proof is omitted, since it is very similar to the proof of Theorem 2.1.
Notice that when 0 < α < 1, we have σα < 1 by Lemma 2.6. The α-lazy random
walk converges to the stationary distribution exponentially fast.

For two vertex subsets X and Y of V (D), let E(X,Y ) be the number of
directed edges from X to Y , i.e., E(X,Y ) = {(u, v) : u ∈ X and v ∈ Y }. We
have the following theorem on edge expansions in Eulerian directed graphs.

Theorem 2.8. If X and Y are two subsets of the vertex set V of an Eulerian directed
graph D, then we have∣∣∣∣|E(X,Y )| − vol(X)vol(Y )

vol(D)

∣∣∣∣ ≤ σ0

√
vol(X)vol(Y )vol(X̄)vol(Ȳ )

vol(D)
.

Proof. Let 1X be the indicator variable of X, i.e., 1X (u) = 1 if u ∈ X and
1X (u) = 0 otherwise. We define 1Y similarly. Assume 1X T 1/2 = a0φ0 + a1φ1

and 1Y T 1/2 = b0φ0 + b1φ2 , where φ1 , φ2 are unit vectors in φ⊥
0 . Since φ0 is a

unit vector, we have

a0 =
〈
1X T 1/2 , φ0

〉
=

vol(X)√
vol(D)

(2.5)

and

a2
0 + a2

1 =
〈
1X T 1/2 ,1X T 1/2

〉
= vol(X). (2.6)

Thus

a1 =
√

vol(X)vol(X̄)/vol(D). (2.7)

Similarly, we get

b0 =
vol(Y )√
vol(D)

and b1 =
√

vol(Y )vol(Ȳ )/vol(D). (2.8)

It follows that∣∣∣∣|E(X,Y )| − vol(X)vol(Y )
vol(D)

∣∣∣∣
=
∣∣∣1X T 1/2(L0 − φ′

0φ0)(1Y T 1/2)′
∣∣∣

= |(a0φ0 + a1φ1)(L0 − φ′
0φ0)(b0φ0 + b1φ2)′| = |a1b1φ1L0φ

′
2 |

≤ |a1b1 |‖φ1‖‖L0φ
′
2‖ ≤ |a1b1 |σ0 = σ0

√
vol(X)vol(Y )vol(X̄)vol(Ȳ )

vol(D)
.

The proof of the theorem is complete.
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If we use λ̄ instead of σ0 , then we get a weaker theorem on edge expansions.
The proof will be omitted, since it is very similar to the proof of Theorem 2.8.

Theorem 2.9. Let D be an Eulerian directed graph. If X and Y are two subsets of
V (D), then we have∣∣∣∣ |E(X,Y )| + |E(Y,X)|

2
− vol(X)vol(Y )

vol(D)

∣∣∣∣ ≤ λ̄ ·
√

vol(X)vol(Y )vol(X̄)vol(Ȳ )
vol(D)

.

For X,Y ⊆ V (D), let d(X,Y ) = min{d(u, v) : u ∈ X and v ∈ Y }. We have the
following upper bound on d(X,Y ).

Theorem 2.10. Suppose that D is a connected Eulerian directed graph. For X,Y ⊆
V (D) such that d(X,Y ) ≥ 2 and 0 ≤ α < 1, we have

d(X,Y ) ≤
⌊
log

√
vol(X̄)vol(Ȳ )
vol(X)vol(Y )

/
log σα

⌋
+ 1.

In particular, for 0 ≤ α < 1, the diameter of D satisfies

diam(D) ≤
⌈

log(vol(D)/δ)
log σα

⌉
,

where δ = min{dx : x ∈ V }.

Remark 2.11. From Lemma 2.6, we have

σ2
α ≤ α2 + 2α(1 − α)λ1 + (1 − α)2σ2

0 .

We can choose α to minimize σα . If λ1 ≤ 1 − σ2
0 , then we choose α = 0 and get

σα = σ0 ; if λ1 > 1 − σ2
0 , then we choose

α =
λ1 + σ2

0 − 1
2λ1 + σ2

0 − 1

and get

σ2
α ≤ 1 − λ2

1

2λ1 + σ2
0 − 1

.

Combining the two cases, we have

min
0≤α<1

{σα} ≤

⎧⎪⎨
⎪⎩

σ0 if λ1 ≤ 1 − σ2
0 ,√

1 − λ2
1

2λ1 +σ 2
0 −1 otherwise.

(2.9)
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It is easy to check that

min
0≤α<1

{σα} ≤
√

1 − λ1

2
.

Here the inequality is strict if σ0 < 1. We have

d(X,Y ) ≤
⌊
log

vol(X̄)vol(Ȳ )
vol(X)vol(Y )

/
log

2
2 − λ1

⌋
+ 1.

Theorem 2.10 is stronger than Theorem 2.5 in general.

Proof. Similar to what we did in the proof of Theorem 2.8, let 1X and 1Y be the
indicator functions of X and Y , respectively. We have

1X T 1/2 = a0φ0 + a1φ1 and 1Y T 1/2 = b0φ0 + b1φ2 ,

where φ1 , φ2 are unit vectors in φ⊥
0 , and a0 , b0 , a1 , b1 are given by (2.5) through

(2.8).
Let

k =

⌊
log

√
vol(X̄)vol(Ȳ )
vol(X)vol(Y )

/
log σα

⌋
+ 1.

We have (
1X T 1/2

)
Lk

α

(
1Y T 1/2

)′
≥ a0b0 + σk

αa1b1 > 0.

Thus there is a directed path starting from some vertex in X and ending at some
vertex in Y , that is, d(X,Y ) ≤ k.

For the diameter result, we choose X = {x} and Y = {y}. Note that vol(X) =
dx ≥ δ, vol(Y ) = dy ≥ δ, vol(X̄) < vol(G), and vol(ȳ) < vol(G). The result
follows.

3. Definition of the s th Laplacian

Let H be an r-uniform hypergraph (or an r-graph for short) with vertex set
V (H) (or V for short) and edge set E(H). We assume that |V (H)| = n and
E(H) ⊆ (

V
r

)
. For a vertex subset S such that |S| < r, the neighborhood Γ(S) is

{T | S ∩ T = ∅ and S ∪ T is an edge in H}. Let the degree dS of S in H be the
number of edges containing S, i.e., dS = |Γ(S)|. For 1 ≤ s ≤ r − 1, an s-walk of
length k is a sequence of vertices

v1 , v2 , . . . , vj , . . . , v(r−s)(k−1)+r
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v1 vv 3
v v5 v v7642 v1 vv 32 v 4 v5 v6 v1 vv 32 v4 v5 v6 v7

v8

Figure 1. Three examples of an s-walk in a hypergraph: a 1-walk in a 3-graph
(left), a 2-walk in a 3-graph (center), and a 2-walk in a 4-graph right).

together with a sequence of edges F1 , F2 , . . . , Fk such that

Fi = {v(r−s)(i−1)+1 , v(r−s)(i−1)+2 , . . . , v(r−s)(i−1)+r}

for 1 ≤ i ≤ k. Some examples of s-walks are shown in Figure 1.
For each i in {0, 1, . . . , k}, the ith stop xi of an s-walk is the ordered s-tuple

(v(r−s)i+1 , v(r−s)i+2 , . . . , v(r−s)i+s). The initial stop is x0 , and the terminal stop
is xk . An s-walk is an s-path if stops (as ordered s-tuples) are distinct. If x0 = xk ,
then an s-walk is closed.

An s-cycle is a special closed s-walk such that v1 , v2 , . . . , v(r−s)k are distinct
and v(r−s)k+j = vj for 1 ≤ j ≤ s (see Figure 2). An s-cycle is a loose cycle if
s ≤ r/2 (particularly s = 1); an s-cycle is a tight cycle if s > r/2 (particularly
s = r − 1). An s-cycle is Hamiltonian if it covers each vertex in H exactly once.
In the literature, Hamiltonian tight cycles were first studied in [Katona and
Kierstead 99]. Hamiltonian s-cycles for a full range of s were studied in [Rödl
et al. 06, Rödl et al. 08, Keevash et al. 12, Kühn et al. 12, Kühn and Osthus 06,
Hàn and Schacht 99]. Hamiltonian s-cycles in random r-uniform hypergraphs
were studied in [Dudek and Frieze 11, Dudek and Frieze 12, Frieze 10].

For 1 ≤ s ≤ r − 1 and x, y ∈ Vs , the s-distance d(s)(x, y) is the minimum in-
teger k such that there exists an s-path of length k starting from x and ending
at y. A hypergraph H is s-connected if d(s)(x, y) is finite for every pair (x, y). If
H is s-connected, then the s-diameter of H is the maximum value of d(s)(x, y)
for x, y ∈ Vs .

Figure 2. Examples of a loose cycle and a tight cycle in a 3-graph: a 1-cycle in
a 3-graph (left) and a 2-cycle in a 3-graph (right).
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A random s-walk with initial stop x0 is an s-walk generated as follows. Let x0

be the sequence of visited vertices at the initial step. At each step, let S be the
set of the last s vertices in the sequence of visited vertices. A random (r − s)-set
T is chosen from Γ(S) uniformly; the vertices in T are added into the sequence
one by one in an arbitrary order.

For 0 ≤ α ≤ 1, an α-lazy random s-walk is a modified random s-walk such
that with probability α, one can stay at the current stop; with probability 1 − α,
append r − s vertices to the sequence as selected in a random s-walk.

For x ∈ Vs , let [x] be the s-set consisting of the coordinates of x.

3.1. Case 1 ≤ s ≤ r/2

For 1 ≤ s ≤ r/2, we define a weighted undirected graph G(s) over the vertex
set Vs as follows. Let the weight w(x, y) be |{F ∈ E(H) : [x] � [y] ⊆ F}|. Here
[x] � [y] is the disjoint union of [x] and [y]. In particular, if [x] ∩ [y] �= ∅, then
w(x, y) = 0.

For x ∈ Vs , the degree of x in G(s) , denoted by d
(s)
x , is given by

d(s)
x =

∑
y

w(x, y) = d[x]

(
r − s

s

)
s!. (3.1)

Here d[x] means the degree of the set [x] in the hypergraph H. When we restrict
an s-walk on H to its stops, we get a walk on G(s) . This restriction preserves the
length of the walk. Therefore, the s-distance d(s)(x, y) in H is simply the graph
distance between x and y in G(s) ; the s-diameter of H is simply the diameter of
the graph G(s) .

A random s-walk on H is essentially a random walk on G(s) . It can be con-
structed from a random walk on G(s) by inserting r − 2s additional random
vertices Ti between two consecutive stops xi and xi+1 at time i, where Ti is
chosen uniformly from Γ([xi ] ∪ [xi+1]) and the vertices Ti are inserted between
xi and xi+1 in an arbitrary order.

Therefore, we define the sth Laplacian L(s) of H to be the Laplacian of the
weighted undirected graph G(s) .

The eigenvalues of L(s) are listed as λ
(s)
0 , λ

(s)
1 , . . . , λ

(s)

(n
s )s!−1

in nondecreasing

order. Let λ
(s)
max = λ

(s)

(n
s )s!−1

and λ̄(s) = max{|1 − λ
(s)
1 |, |1 − λ

(s)
max |}. For some hy-

pergraphs, the numerical values of λ
(s)
1 and λ

(s)
max are shown in Table 1.



18 Internet Mathematics

H λ
(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(1)
m ax λ

(2)
m ax λ

(3)
m ax λ

(4)
m ax

K3
6 3/4 6/5 6/5 3/2

K3
7 7/10 7/6 7/6 3/2

K4
6 1/3 5/6 6/5 6/5 3/2 1.76759

K4
7 3/8 9/10 7/6 7/6 7/5 7/4

K5
6 0.1464 1/2 5/6 6/5 6/5 3/2 3/2 1.809

K5
7 0.1977 5/8 9/10 7/6 7/6 7/5 3/2 1.809

Table 1. The values of λ
(s)
1 and λ

(s)
m ax of some complete hypergraphs Kr

n .

3.2. The case r/2 < s ≤ r − 1

For r/2 < s ≤ r − 1, we define a directed graph D(s) over the vertex set Vs as
follows. For x, y ∈ Vs such that x = (x1 , . . . , xs) and y = (y1 , . . . , ys), let (x, y)
be a directed edge if xr−s+j = yj for 1 ≤ j ≤ 2s − r and [x] ∪ [y] is an edge
of H.

For x ∈ Vs , the out-degree d+
x in D(s) and the in-degree d−x in D(s) satisfy

d+
x = d[x](r − s)! = d−x .

Thus D(s) is an Eulerian directed graph. We write d
(s)
x for both d+

x and d−x . Now
D(s) is strongly connected if and only if it is weakly connected.

Note that an s-walk on H can be naturally viewed as a walk on D(s) and vice
versa. Thus the s-distance d(s)(x, y) in H is exactly the directed distance from
x to y in G(s) ; the s-diameter of H is the diameter of D(s) . A random s-walk on
H is in one-to-one correspondence with a random walk on D(s) .

For r/2 < s ≤ r − 1, we define the sth Laplacian L(s) as the Laplacian of the
Eulerian directed graph D(s) (see Section 2).

The eigenvalues of L(s) are listed as λ
(s)
0 , λ

(s)
1 , . . . , λ

(s)

(n
s )s!−1

in nondecreasing

order. Let λ
(s)
max = λ

(s)

(n
s )s!−1

and λ̄(s) = max{|1 − λ
(s)
1 |, |1 − λ

(s)
max |}. For some hy-

pergraphs, the numerical values of λ
(s)
1 and λ

(s)
max are shown in Table 1.

3.3. Examples

Let Kr
n be the complete r-uniform hypergraph on n vertices. Here we compute

the values of λ
(s)
1 and λ

(s)
max for some Kr

n (see Table 1).
From Table 1, we observe that λ

(s)
1 = λ

(s)
max for some complete hypergraphs.

In fact, this is true for every complete hypergraph Kr
n . We have the following

property.
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Property 3.1. For an r-uniform hypergraph H and an integer s such that
1 ≤ s ≤ r/2, we have λ

(s)
1 (H) = λ

(s)
max(H) if and only if s = 1 and H is a

2-design.

Proof. In one direction, suppose s = 1 and H is a 2-design. For each pair of vertices,
the number of edges containing the pair is a constant. Thus G(s) is a complete
weighted graph. The Laplacian of any complete weighted graph is the same as
the Laplacian of the complete graph Kn . Thus, λ

(s)
1 (H) = λ

(s)
max(H).

In the other direction, suppose λ
(s)
1 (H) = λ

(s)
max(H) = λ. We have

L(s) = λI − λφ∗
0φ0 , (3.2)

where φ0 is the unit eigenvector corresponding to the trivial eigenvalue 0. Taking
the trace of both sides, we get(

n

s

)
s! = λ

(
n

s

)
s! − λ.

Solving for λ, we get

λ = 1 +
1(

n
s

)
s! − 1

.

Write L(s) = I − T−1/2AT−1/2 , where A is the weight matrix of G(s) and T is
the diagonal matrix of d

(s)
x in G(s) . From (3.2), we have

T−1/2AT−1/2 = − 1(
n
s

)
s! − 1

I +

(
n
s

)
s!(

n
s

)
s! − 1

φ∗
0φ0 . (3.3)

If s ≥ 2, then some off-diagonal entries of A are zero by the definition of G(s) .
However, all off-diagonal entries of the right-hand-side matrix are nonzero, a
contradiction. We must have s = 1. In this case, we have

φ0 =
1

vol
(
G(1)

) (√d1 , . . . ,
√

dn

)∗
.

By comparing the diagonal entries of (3.3), we get d1 = d2 = · · · = dn . Thus H

is a 2-design.

4. Properties of Laplacians

In this section, we prove some properties of the Laplacians for hypergraphs.

Lemma 4.1. For 1 ≤ s ≤ r/2, we have the following properties:
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1. The sth Laplacian has
(
n
s

)
s! eigenvalues, and all of them are in [0, 2].

2. The number of 0 eigenvalues is the number of connected components in G(s).

3. The Laplacian L(s) has an eigenvalue 2 if and only if r = 2s and G(s) has a
bipartite component.

Proof. We have the following facts (see [Chung 97, Chapter 1]) for a weighted
graph G: all Laplacian eigenvalues of G are in [0, 2]; the number of 0 eigenvalues
is the number of connected components in G; G has an eigenvalue 2 if and only
if G has a bipartite component.

Items 1 and 2 follow from the facts of the Laplacian of G(s) . We thus need to
prove only item 3. If L(s) has an eigenvalue 2, then G(s) has a bipartite component
T . We want to show that r = 2s. Suppose r ≥ 2s + 1. Let {v0 , v1 , . . . , vr−1} be an
edge in T . For 0 ≤ i ≤ 2s + 1 and 0 ≤ j ≤ s − 1, let g(i, j) = is + j mod (2s +
1) and xi = (vg(i,0) , . . . , vg(i,s−1)). Observe that [xi ] ∩ [xi+1] = ∅ for all 0 ≤ i ≤
2s and x2s+1 = x0 . Thus the sequence x0 , x1 , . . . , x2s forms an odd cycle in G(s) ,
a contradiction.

The following lemma compares λ
(s)
1 and λ

(s)
max for different s.

Lemma 4.2. Suppose that H is an r-uniform hypergraph. We have

λ
(1)
1 ≥ λ

(2)
1 ≥ · · · ≥ λ

(�r/2�)
1 ; (4.1)

λ(1)
max ≤ λ(2)

max ≤ · · · ≤ λ(�r/2�)
max . (4.2)

Remark 4.3. We do not know whether similar inequalities hold for s > r/2.

Proof. Let Ts be the diagonal matrix of degrees in G(s) , and let R(s)(f) be the
Rayleigh quotient of L(s) . It suffices to show that λ

(s)
1 ≤ λ

(s−1)
1 for 2 ≤ s ≤ r/2.

Recall that λ
(s)
1 can be defined via the Rayleigh quotient; see (2.1). Pick a func-

tion f : V (s−1) → R such that 〈f, Ts−11〉 = 0 and λ
(s−1)
1 = R(s−1)(f). We define

g : Vs → R as follows:

g(x) = f(x′),

where x′ is an (s − 1)-tuple consisting of the first (s − 1) coordinates of x with
the same order in x. Applying (3.1), we get

〈g, Ts1〉 =
∑
x∈V s

d(s)
x g(x) =

∑
x∈V s

g(x)d[x]

(
r − s

s

)
s!.
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We have ∑
x

g(x)d[x] =
∑

x

∑
F :[x]⊆F

g(x)

=
∑
x ′

∑
F :[x ′]⊆F

(r − s + 1)f(x′) =
∑
x ′

d[x ′](r − s + 1)f(x′)

=
r − s + 1(

r−s+1
s−1

)
(s − 1)!

∑
x ′

f(x′)d(s−1)
x ′ = 0.

Here the second-to-last equality follows from (3.1), and the last one follows from
the choice of f . Therefore,∑

x

g(x)d(s)
x = (r − s + 2)(r − s + 1)

∑
x ′

f(x′)d(s−1)
x ′ .

Thus 〈g, Ts1〉 = 0. Similarly, we have∑
x

g(x)2d(s)
x = (r − s + 2)(r − s + 1)

∑
x ′

f(x′)2d
(s−1)
x ′ .

Putting these together, we obtain∑
x

g(x)2d(s)
x = (r − s + 2)(r − s + 1)

∑
x ′

f(x′)2d
(s−1)
x ′ .

By a similar counting method, we have∑
x∼y

(g(x) − g(y))2w(x, y) =
∑
x∼y

∑
F :[x]�[y ]⊆F

(g(x) − g(y))2

=
∑
x ′∼y ′

∑
F :[x ′]�[y ′]⊆F

(r − s + 1)(r − s + 2)(f(x′) − f(y′))2

= (r − s + 1)(r − s + 2)
∑
x ′∼y ′

(f(x′) − f(y′))2w(x′, y′).

Thus R(s)(g) = R(s−1)(f) = λ
(s−1)
1 by the choice of f . Since λ

(s)
1 is the infimum

over all g, we get λ
(s)
1 ≤ λ

(s−1)
1 .

The inequality (4.2) can be proved similarly. Since λ
(s)
max is the supremum of

the Rayleigh quotient, the direction of the inequalities is reversed.

Lemma 4.4. For r/2 < s ≤ r − 1, we have the following facts:

1. The sth Laplacian has
(
n
s

)
s! eigenvalues, and all of them are in [0, 2].

2. The number of 0 eigenvalues is the number of strongly connected components
in D(s).
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3. If 2 is an eigenvalue of L(s), then one of the s-connected components of H is
bipartite.

The proof is trivial and will be omitted.

5. Applications

In this section, we show some applications of Laplacians L(s) of hypergraphs.

5.1. Random s -Walks on Hypergraphs

For 0 ≤ α < 1 and 1 ≤ s ≤ r/2, after restricting an α-lazy random s-walk on a
hypergraph H to its stops (see Section 3), we get an α-lazy random walk on
the corresponding weighted graph G(s) . Let π(x) = dx/vol(Vs) for all x ∈ Vs ,
where dx is the degree of x in G(s) and vol(Vs) is the volume of G(s) . Applying
Theorem 2.1, we have the following theorem.

Theorem 5.1. For 1 ≤ s ≤ r/2, suppose that H is an s-connected r-uniform hy-
pergraph and λ

(s)
1 is the first nontrivial eigenvalue of the sth Laplacian of H,

while λ
(s)
max is the last. For 0 ≤ α < 1, the joint distribution fk at the kth stop of

an α-lazy random walk at time k converges to the stationary distribution π in
probability. In particular, we have∥∥∥(fk − π)T−1/2

∥∥∥ ≤
(
λ̄(s)

α

)k ∥∥∥(f0 − π)T−1/2
∥∥∥ ,

where

λ̄(s)
α = max

{
|1 − (1 − α)λ(s)

1 |, |(1 − α)λ(s)
max − 1|

}
,

and f0 is the probability distribution at the initial stop.

For 0 < α < 1 and r/2 < s ≤ r − 1, when restricting an α-lazy random s-walk
on a hypergraph H to its stops (see Section 2), we get an α-lazy random walk
on the corresponding directed graph D(s) . Let π(x) = dx/vol(Vs) for all x ∈ Vs ,
where dx is the degree of x in D(s) and vol(Vs) is the volume of D(s) . Applying
Theorem 2.7, we have the following theorem.

Theorem 5.2. For r/2 < s ≤ r − 1, suppose that H is an s-connected r-uniform
hypergraph and λ

(s)
1 is the first nontrivial eigenvalue of the sth Laplacian of H.

For 0 < α < 1, the joint distribution fk at the kth stop of an α-lazy random walk



Lu and Peng: High-Order Random Walks and Generalized Laplacians on Hypergraphs 23

at time k converges to the stationary distribution π in probability. In particular,
we have ∥∥∥(fk − π)T−1/2

∥∥∥ ≤ (σ(s)
α )k

∥∥∥(f0 − π)T−1/2
∥∥∥ ,

where σ
(s)
α ≤

√
1 − 2α(1 − α)λ(s)

1 , and f0 is the probability distribution at the
initial stop.

Remark 5.3. The reason that we require 0 < α < 1 in the case r/2 < s ≤ r − 1 is
that σ0(D(s)) = 1 for r/2 < s ≤ r − 1.

5.2. The s -Distances and s -Diameters in Hypergraphs

Let H be an r-uniform hypergraph. For 1 ≤ s ≤ r − 1 and x, y ∈ Vs , the s-
distance d(s)(x, y) is the minimum integer k such that there is an s-path of
length k starting at x and ending at y. For X,Y ⊆ Vs , let

d(s)(X,Y ) = min
{

d(s)(x, y) | x ∈ X, y ∈ Y
}

.

If H is s-connected, then the s-diameter diam(s)(H) satisfies

diam(s)(H) = max
x,y∈V s

{
d(s)(x, y)

}
.

For 1 ≤ s ≤ r/2, the s-distances in H and the s-diameter of H are simply the
respective graph distances in G(s) and diameter of G(s) . Applying Theorem 2.2
and Corollary 2.3, we have the following theorems.

Theorem 5.4. Suppose H is an r-uniform hypergraph. For integer s such that 1 ≤
s ≤ r/2, let λ

(s)
1 be the first nontrivial eigenvalue of the sth Laplacian of H, and

λ
(s)
max the last. Suppose λ

(s)
max > λ

(s)
1 > 0. For X,Y ⊆ Vs , if d(s)(X,Y ) ≥ 2, then

we have

d(s)(X,Y ) ≤
⌈
log

√
vol(X̄)vol(Ȳ )
vol(X)vol(Y )

/
log

λ
(s)
max + λ

(s)
1

λ
(s)
max − λ

(s)
1

⌉
.

Here vol(∗) are volumes in G(s).

Remark 5.5. We know that λ
(s)
1 > 0 if and only if H is s-connected. The condition

λ
(s)
max > λ

(s)
1 holds unless s = 1 and every pair of vertices is covered by edges

evenly (i.e., H is a 2-design).

Theorem 5.6. Suppose H is an r-uniform hypergraph. For integer s such that 1 ≤
s ≤ r/2, let λ

(s)
1 be the first nontrivial eigenvalue of the sth Laplacian of H, and
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let λ
(s)
max be the last. If λ

(s)
max > λ

(s)
1 > 0, then the s-diameter of an r-uniform

hypergraph H satisfies

diam(s)(H) ≤
⌈
log

vol(Vs)
δ(s)

/
log

λ
(s)
max + λ

(s)
1

λ
(s)
max − λ

(s)
1

⌉
.

Here

vol(Vs) =
∑
x∈V s

dx = |E(H)| r!
(r − 2s)!

,

and δ(s) is the minimum degree in G(s).

When r/2 < s ≤ r − 1, the s-distances in H and the s-diameter of H are re-
spectively the directed distance in D(s) and the diameter of D(s) . Applying
Theorem 2.10 and Remark 2.11, we have the following theorems.

Theorem 5.7. Let H be an r-uniform hypergraph. For r/2 < s ≤ r − 1 and X,Y ⊆
Vs , if H is s-connected, then we have

d(s)(X,Y ) ≤
⌊
log

vol(X̄)vol(Ȳ )
vol(X)vol(Y )

/
log

2

2 − λ
(s)
1

⌋
+ 1.

Here λ
(s)
1 is the first nontrivial eigenvalue of the Laplacian of D(s), and vol(∗)

are volumes in D(s).

Theorem 5.8. For r/2 < s ≤ r − 1, suppose that an r-uniform hypergraph H is s-
connected. Let λ

(s)
1 be the smallest nonzero eigenvalue of the Laplacian of D(s).

The s-diameter of H satisfies

diam(s)(H) ≤
⌈
2 log

vol(Vs)
δ(s)

/
log

2

2 − λ
(s)
1

⌉
.

Here vol(Vs) =
∑

x∈V s dx = |E(H)|r! and δ(s) is the minimum degree in D(s).

5.3. Edge Expansions in Hypergraphs

In this subsection, we prove some results on edge expansions in hypergraphs. Note
that there has been some attempt to generalize the edge discrepancy theorem
from graphs to hypergraphs [Butler unpubl.].
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Let H be an r-uniform hypergraph. For S ⊆ (
V
s

)
, we recall that the volume of

S satisfies

vol(S) =
∑
x∈S

dx.

Here dx is the degree of the set x in H. In particular, we have

vol
((

V

s

))
= |E(H)|

(
r

s

)
.

The density e(S) of S is vol(S)/vol(
(
V
s

)
). Let S̄ be the complement of S in

(
V
s

)
.

We have

e(S̄) = 1 − e(S).

For 1 ≤ t ≤ s ≤ r − t, S ⊆ (
V
s

)
, and T ⊆ (

V
t

)
, let

E(S, T ) = {F ∈ E(H) : ∃x ∈ S,∃y ∈ T, x ∩ y = ∅, and x ∪ y ⊆ F}.

Note that |E(S, T )| counts the number of edges contained in x � y for some x ∈ S

and y ∈ T . In particular, we have∣∣∣∣E
((

V

s

)
,

(
V

t

))∣∣∣∣ = |E(H)| r!
s!t!(r − s − t)!

.

Theorem 5.9. For 1 ≤ t ≤ s ≤ r/2, S ⊆ (
V
s

)
, and T ⊆ (

V
t

)
, let

e(S, T ) =
|E(S, T )|

|E(
(
V
s

)
,
(
V
t

)
)| .

We have

|e(S, T ) − e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ). (5.1)

Proof. Let G(s) be the weighed undirected graph defined in Section 3. Define S ′

and T ′ (sets of ordered s-tuples) as follows:

S ′ = {x ∈ Vs | [x] ∈ S}, T ′ = {(y, z) ∈ Vs | [y] ∈ T}.

Let S̄ ′ and T̄ ′ be the respective complements of S ′ and T ′ in Vs . We make a
convention that volG ( s ) (∗) denotes volumes in G(s) , while vol(∗) denotes volumes
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in H. We have

volG ( s ) (G(s)) = vol
((

V

s

))
s!(r − s)!
(r − 2s)!

; (5.2)

volG ( s ) (S ′) = vol(S)
s!(r − s)!
(r − 2s)!

; (5.3)

volG ( s ) (T ′) = vol(T )
t!(r − t)!
(r − 2s)!

; (5.4)

volG ( s ) (S̄ ′) = vol(S̄)
s!(r − s)!
(r − 2s)!

; (5.5)

volG ( s ) (T̄ ′) = vol(T̄ )
t!(r − t)!
(r − 2s)!

. (5.6)

Let EG ( s ) (S ′, T ′) be the number of edges between S ′ and T ′ in G(s) . We get

|EG ( s ) (S ′, T ′)| =
(r − s − t)!s!t!

(r − 2s)!
|E(S, T )|.

Applying Theorem 2.4 to the sets S ′ and T ′ in G(s) , we obtain∣∣∣∣|EG ( s ) (S ′, T ′)| − volG ( s ) (S ′)volG ( s ) (T ′)
volG ( s ) (G(s))

∣∣∣∣
≤ λ̄

(s)
1

√
volG ( s ) (S ′)volG ( s ) (T ′)volG ( s ) (S̄ ′)volG ( s ) (T̄ ′)

volG ( s ) (G(s))
.

Combining (5.2) through (5.6) and the inequality above, we obtain inequality
(5.1).

Now we consider the case that s > r/2. Due to the fact that σ
(s)
0 = 1, we have

to use the weaker expansion theorem, Theorem 2.9. Note that∣∣∣∣E
((

V

s

)
,

(
V

t

))∣∣∣∣ = |E(H)| r!
(r − s − t)!s!t!

.

We get the following theorem.

Theorem 5.10. For 1 ≤ t < r/2 < s < s + t ≤ r, S ⊆ (
V
s

)
, and T ⊆ (

V
t

)
, let

e(S, T ) =
|E(S, T )|

|E(
(
V
s

)
,
(
V
t

)
)| .

If |x ∩ y| �= min{t, 2s − r} for every x ∈ S and y ∈ T , then we have∣∣∣∣12e(S, T ) − e(S)e(T )
∣∣∣∣ ≤ λ̄(s)

√
e(S)e(T )e(S̄)e(T̄ ). (5.7)
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Proof. Recall that D(s) is the directed graph defined in Section 3. Let

S ′ = {x ∈ Vs | [x] ∈ S},
T ′ = {(y, z) ∈ Vs | [z] ∈ T}.

We also denote by S̄ ′ and T̄ ′ the respective complements of S ′ and T ′ in Vs . We
use the convention that volD ( s ) (∗) denotes volumes in D(s) , while vol(∗) denotes
volumes in the hypergraph H. We have

volD ( s ) (D(s)) = vol
((

V

s

))
s!(r − s)!, (5.8)

volD ( s ) (S ′) = vol(S)s!(r − s)!, (5.9)
volD ( s ) (T ′) = vol(T )t!(r − t)!, (5.10)
volD ( s ) (S̄ ′) = vol(S̄)s!(r − s)!, (5.11)
volD ( s ) (T̄ ′) = vol(T̄ )s!(r − s)!. (5.12)

Let ED ( s ) (S ′, T ′) be the number of directed edges from S ′ to T ′ in D(s) , and let
ED ( s ) (T ′, S ′) be the number of such edges from T ′ to S ′. We get

|ED ( s ) (S ′, T ′)| = (r − s − t)!s!t!|E(S, T )|.
From the condition |x ∩ y| �= min{t, 2s − r} for each x ∈ S and each y ∈ T , we
observe that

ED ( s ) (T ′, S ′) = 0.

Applying Theorem 2.9 to the sets S ′ and T ′ in D(s) , we obtain∣∣∣∣ |ED ( s ) (S ′, T ′)| + |ED ( s ) (T ′, S ′)|
2

− volD ( s ) (S ′)volD ( s ) (T ′)
volD ( s ) (D(s))

∣∣∣∣
≤ λ̄

(s)
1

√
volD ( s ) (S ′)volD ( s ) (T ′)volD ( s ) (S̄ ′)volD ( s ) (T̄ ′)

volD ( s ) (D(s))
.

Combining (5.8) through (5.12) and the inequality above, we get inequality (5.7).

Nevertheless, we have the following strong edge expansion theorem for r/2 <

s ≤ r − 1. For S, T ⊆ (
V
s

)
, let E ′(S, T ) be the set of edges of the form x ∪ y for

some x ∈ S and y ∈ T . Namely,

E ′(S, T ) = {F ∈ E(H) | ∃x ∈ S,∃y ∈ T, F = x ∪ y}.
Observe that∣∣∣∣E′

((
V

s

)
,

(
V

s

))∣∣∣∣ = |E(H)| r!
(r − s)!(2s − r)!(r − s)!

.
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Theorem 5.11. For r/2 < s ≤ r − 1 and S, T ⊆ (
V
s

)
, let

e′(S, T ) =
|E ′(S, T )|

|E ′(
(
V
s

)
,
(
V
s

)
)| .

We have

|e′(S, T ) − e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ). (5.13)

Proof. Let

S ′ = {x ∈ Vs | [x] ∈ S},
T ′ = {y ∈ Vs | [y[∈ T}.

Let S̄ ′ and T̄ ′ be the respective complements of S ′ and T ′ in Vs . We use the
convention that volD ( s ) (∗) denotes volumes in D(s) , while vol(∗) denotes volumes
in the hypergraph H. We have

volD ( s ) (D(s)) = vol
((

V

s

))
s!(r − s)!; (5.14)

volD ( s ) (S ′) = vol(S)s!(r − s)!; (5.15)
volD ( s ) (T ′) = vol(T )s!(r − s)!; (5.16)
volD ( s ) (S̄ ′) = vol(S̄)s!(r − s)!; (5.17)
volD ( s ) (T̄ ′) = vol(T̄ )s!(r − s)!. (5.18)

Let ED ( s ) (S ′, T ′) and ED ( s ) (T ′, S ′) be the respective numbers of directed edges
from S ′ to T ′ and from T ′ to S ′ in D(s) . We get

|ED ( s ) (S ′, T ′)| = |ED ( s ) (T ′, S ′)| = (r − s)!(2s − r)!(r − s)!|E ′(S, T )|.
Applying Theorem 2.9 to the sets S ′ and T ′ on D(s) , we obtain∣∣∣∣ |ED ( s ) (S ′, T ′)| + |ED ( s ) (T ′, S ′)|

2
− volD ( s ) (S ′)volD ( s ) (T ′)

volD ( s ) (D(s))

∣∣∣∣
≤ λ̄

(s)
1

√
volD ( s ) (S ′)volD ( s ) (T ′)volD ( s ) (S̄ ′)volD ( s ) (T̄ ′)

volD ( s ) (D(s))
.

Combining (5.14) through (5.18) and the inequality above, we get inequality
(5.13).

6. Concluding Remarks

In this paper, we introduced a set of Laplacians for r-uniform hypergraphs.
For 1 ≤ s ≤ r − 1, the s-Laplacian L(s) is derived from the random s-walks on
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hypergraphs. For 1 ≤ s ≤ r/2, the sth Laplacian L(s) is defined to be the Lapla-
cian of the corresponding weighted graph G(s) . The first Laplacian L(1) is exactly
the Laplacian introduced in [Rodŕıguez 09].

For r/2 ≤ s ≤ r − 1, the sth Laplacian L(s) is defined to be the Laplacian of
the corresponding Eulerian directed graph D(s) . From Lemma 2.6, Theorem 2.7,
and Theorem 2.8, it seems that σ0(D(s)) might be a good parameter. However,
it is not hard to show that σ0(D(s)) = 1 always holds, which makes Theorem 2.8
useless for hypergraphs. We can use the weaker Theorem 2.9 for hypergraphs.
Our work is based on (with some improvements) the recent work [Chung 05,
Chung 06] on directed graphs.

Let us recall Chung’s definition of Laplacians [Chung 93] for regular hyper-
graphs. An r-uniform hypergraph H is d-regular if dx = d for every x ∈ Vr−1 .
Let G be a graph on the vertex set Vr−1 . For x, y ∈ Vr−1 , let xy be an edge if
x = x1x2 , . . . , xr−1 and y = y1x2 , . . . , xr−1 such that {x1 , y1 , x2 , . . . , xr−1} is an
edge of H. Let A be the adjacency matrix of G, T the diagonal matrix of degrees
in G, and K the adjacency matrix of the complete graph on the edge set Vr−1 .
In [Chung 93], the Laplacian L is defined such that

L = T − A +
d

n
(K + (r − 1)I).

This definition comes from the homology theory of hypergraphs [Chung 93].
Firstly, L is not normalized in Chung’s definition, i.e., the eigenvalues are not in
the interval [0, 2]. Secondly, the add-on term

d

n
(K + (r − 1)I)

is not related to the structures of H. If we ignore the add-on term and normalize
the matrix, then we essentially get the Laplacian of the graph G. Note that if
G is disconnected, then λ1(G) = 0, and this situation is not interesting. Thus
Chung added an additional term. The graph G is actually very close to our
Eulerian directed graph D(r−1) . Let B be the adjacency matrix of D(r−1) . In
fact, we have B = QA, where Q is a rotation that maps x = x1 , x2 , . . . , xr−1 to
x′ = x2 , . . . , xr−1 , x1 . Since dx = dx ′ , it follows that Q and T commute, and we
have

(T−1/2BT−1/2)′(T−1/2BT−1/2) = T−1/2B′T−1BT−1/2

= T−1/2A′Q′T−1QAT−1/2 = T−1/2A′T−1Q′QAT−1/2

= T−1/2A′T−1AT−1/2 .
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Here we use the fact that Q′Q = I. This identity means that the singular values
of I − L(r−1) are precisely equal to 1 minus the Laplacian eigenvalues of the
graph G.

Our definitions of Laplacians L(s) seem to be related to the quasirandomness
[Chung and Graham 90, Kohayakawa et al. 02] of hypergraphs. We are very
interested in this direction. Many concepts such as the s-walk, the s-path, the
s-distance, and the s-diameter are of independent interest.
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[Li and Solé 96] W.-C. W. Li and P. Solé. “Spectra of Regular Graphs and Hypergraphs
and Orthogonal Polynomials.” Europ. J. Combinatorics 17 (1996), 461–477.

[Mihail 89] M. Mihail. “Conductance and Convergence of Markov Chains: A Combina-
torial Treatment of Expanders.” In Proc. of 30th FOCS, pp. 526–531, 1989.
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3-Uniform Hypergraphs.” Combin. Probab. Comput, 15:1-2 (2006), 229–251.
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