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On the Peak-to-Average Power
Ratio Reduction Problem for
Orthogonal Transmission Schemes
Holger Boche and Brendan Farrell

Abstract. High peak values of transmission signals in wireless communication systems
lead to wasteful energy consumption and out-of-band radiation. However, reducing peak
values generally comes at the cost of some other resource. We provide a theoretical con-
tribution toward understanding the relationship between peak value reduction and the
resulting cost in information rates. In particular, we address the relationship between
peak values and the proportion of transmission signals allocated for information trans-
mission when one is using a strategy known as tone reservation. We show that when
tone reservation is used in both OFDM and DS-CDMA systems, if a peak-to-average
power ratio criterion is always satisfied, then the proportion of transmission signals
that may be allocated for information transmission must tend to zero. We investigate
properties of these two systems for sets of both finite and infinite cardinalities. We
present properties that OFDM and DS-CDMA share in common as well as ways in
which they fundamentally differ.

1. Introduction

Recent studies by two prominent consulting firms have estimated that 2%
of global CO2 emissions are attributable to the use of information and
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communication technology, a contribution comparable to aviation [Boccaletti
et al. 08, Gartner 07, POST 08]. While this impact is already significant, the
amount of information communicated electronically is growing exponentially, and
the emissions percentage is expected to increase to 3% by 2020. A large portion of
the energy consumption that causes emissions is due to wireless communications,
and within wireless systems, a significant portion of this energy consumption oc-
curs at the amplifiers. Communications companies must deal with a tradeoff
between expensive amplifiers that are efficient, a capital expenditure, and inex-
pensive amplifiers and high energy costs, an operating cost. The increase in the
volume of wireless communication requires the implementation of systems that
place more and more individual signals in a frequency band, and this, inherently,
leads to larger signal amplitudes. Thus, from both an environmental and finan-
cial perspective, the interplay between information capacity, signal peak values,
amplifier performance, and energy consumption is an essential area for research.
The current understanding is that amplifiers are more efficient when transmitting
signals that have smaller peak values. See [Raab et al. 02] for an overview.

While keeping the broader considerations of power consumption, amplifier ef-
ficiency, and capacity in mind, we focus in this paper on the relationship between
signal peak values and the proportion of signal resources that can be allocated for
information transmission. We address the balance between allocating resources
toward reducing signal peak values and allocating them for transmitting informa-
tion. To the best of the authors’ knowledge, there has been very little theoretical
work done in this area, and little is known about the fundamental relationships
between these various aspects of wireless communication.

We focus our attention on two of the most important contemporary commu-
nications systems, namely orthogonal frequency division multiplexing (OFDM)
and direct sequence–code division multiple access (DS-CDMA). Both of these
use a classical basis for transmission signals: OFDM uses the Fourier basis, and
DS-CDMA uses the Walsh basis. In either case, coefficients are chosen to repre-
sent a message, and the linear combination corresponding to these coefficients is
transmitted. As part of transmission, the signal passes through an amplifier. Ev-
ery amplifier has a threshold beyond which it cannot linearly amplify the signal,
but distorts or “clips” it. We say that a signal is clipped at magnitude M if the
signal is left undisturbed when its magnitude is less than M , and its magnitude
is reduced to M when it is greater than M while leaving the phase unchanged.
Both distortion and clipping take place only above some threshold, so that one
may say that only the peaks are affected.

Transmission signals generally also satisfy a frequency-band requirement, that
is, their Fourier transforms are supported in a specified region or the sig-
nal is band-limited. This results in the signals being analytic, i.e., infinitely
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differentiable with convergent power series. If the distorted signal differs from
the original only when the original magnitude exceeds a threshold, then the two
signals agree whenever the original is below that threshold. If the distorted func-
tion is also band-limited, then it is analytic, and the difference between original
and distorted signals is zero on an open interval. A basic theorem of complex
analysis then implies that their difference is identically zero. Thus, the distorted
function cannot be band-limited. That is, if clipping or distortion occurs, then
the amplified signal is not band-limited, and out-of-band radiation occurs. This
gives the motivation for the approach taken in this paper.

If the transmitted signal is not band-limited, it interferes with other frequency
bands. If one is interested in capacity or error rates without a requirement that
out-of-band radiation not occur, then a probabilistic approach to the peak be-
havior is appropriate. However, in many instances, out-of-band radiation may
be strictly prohibited.

With the transition from analog to digital television transmission, the im-
proved efficiencies allowed new frequency bands to be redistributed, in particu-
lar for wireless communications. This is commonly called the “digital dividend.”
Very strict quality of service requirements have been imposed on operators for
some of these bands, and a percentage-based compliance is insufficient. An ex-
ample is wireless microphones, whereby users are of course very sensitive to a
disruption of service. In these cases, statistical models are inadequate.

The strategy we consider here is known in the OFDM setting as tone reser-
vation. This method was introduced in [Tellado and Cioffi 98, Tellado 99]; an
overview is given in [Han and Lee 05, Litsyn 07], and a survey of recent advances
is given in [Wunder et al. 13]. We will apply this strategy as well to the CDMA
setting. Here one separates the available transmission signals into two subsets.
Coefficients that carry the message are then applied to signals in one subset, and
then coefficients are determined for the signals in the second subset such that
the peak of the entire composite signal is ideally below a threshold. There are
other methods to reduce the peak value, such as selected mapping and clipping
and filtering. However, tone reservation is canonical in that the coefficients to
be transmitted are not altered in any way, the auxiliary coefficients may simply
be ignored by the receiver, and there is no additional overhead to transmission.
We note that the literature on these topics is enormous, with some papers cited
several hundred times. Extensive references of the most important works are
available in [Litsyn 07, Wunder et al. 13].

Here we address how the ratio of information-bearing signals to compensation
signals behaves with respect to a peak threshold as the total number of avail-
able signals increases. The two main results presented here, Theorem 3.4 in the
Fourier–OFDM case and Theorem 4.2 in the Walsh–CDMA case, show that if a
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peak threshold must always be satisfied, then the proportion of signals that may
be used to carry information converges to zero. While the OFDM and CDMA
share this property in common, they behave quite differently in other significant
ways, which we discuss in later sections. These main results are coupled with two
other main points. This first is a relationship between what we will call solvability
and a norm equivalence, and the second is a fundamentally different behavior
when these questions are addressed for sets of finite or infinite cardinality. The
relationship between solvability and norm equivalence is presented in Section 2.
The Fourier–OFDM case is addressed in Section 3, and the density result for the
Walsh–CDMA case is presented in Section 4.1. Section 4.2 gives further prop-
erties of the Walsh system and in particular, emphasizes their localized nature.
Some of these results were presented at a special session of the IEEE Conference
on Vehicular Technology in Dresden, Germany, in June 1013.

While this paper addresses Fourier–OFDM and Walsh–CDMA systems, we
note that recent results for the peak-value behavior of single-carrier (sinc) sys-
tems were obtained in [Boche et al. 12]. There it is shown that the expected peak
of a random linear combination of shifted sinc functions grows with the number
of such functions. This underscores the prevalence of high peak amplitudes in
communications systems.

2. Solvability and a Norm Equivalence for Orthonormal Systems

2.1. Introductory Facts

We first formalize our problem and then introduce an important aspect of our ap-
proach. We begin with the following definition, where without loss of generality,
we take [0, 1] as the symbol interval.

Definition 2.1. Given a set of orthonormal functions {φn}N
n=1 ⊂ L2([0, 1]), we define

the peak-to-average power ratio (PAPR) of a set of coefficients a ∈ C N by

PAPR({φn}N
n=1 , a) = ess supt∈[0,1]

∣∣∑N
n=1 anφn (t)

∣∣
‖a‖l2N

.

The following simple proposition shows that PAPR values of order
√

N can
occur for any orthonormal system. We include the proof just for the sake of
completeness.
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Proposition 2.2. [Boche and Pohl 07, Theorem 6] Let {φk}N
k=1 be N orthonormal

functions in L2([0, 1]). Then there exists a sequence a ∈ l2N with norm ‖a‖l2N
= 1

such that

ess supt∈[0,1]

∣∣∣∣
N∑

n=1

anφn (t)
∣∣∣∣ ≥ √

N.

Proof. First we observe that

N =
1
2π

∫ π

−π

N∑
n=1

|φn (t)|2dt ≤ ess supt∈[0,1]

N∑
n=1

|φn (t)|2 .

So, for every ε > 0, there exists t0 ∈ [0, 1] such that all {φk}N
k=1 are defined at t0

and

N − ε ≤
N∑

n=1

|φn (t0)|2 . (2.1)

Now set

an =
φn (t0)√∑N

n=1 |φn (t0)|2
.

Using inequality (2.1), we have

sup
t∈[0,1]

N∑
n=1

anφn (t) ≥
N∑

n=1

anφn (t0) =
∑N

n=1 φn (t0)φn (t0)√∑N
n=1 |φn (t0)|2

=
( N∑

n=1

|φn (t0)|2
)1/2

≥ √
N − ε.

Since ε is arbitrary, we have proved the proposition.

Thus, for every orthonormal basis {φn}∞n=1, we have

sup
‖a‖l 2 =1

PAPR({φn}N
n=1 , a) ≥

√
N.

In fact,
√

N is also a bound on the PAPR for both the OFDM and the
DS-CDMA systems. Since the transmission signals in each of these cases are uni-
formly bounded by 1, this follows from applying the Cauchy–Schwarz inequality
pointwise to the linear combination. Therefore, OFDM does not offer any advan-
tages with regard to worst-case performance for PAPR. Proposition 2.2 shows
that the upper bound on PAPR for these two systems is also a lower bound on
PAPR for all orthonormal systems.
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2.2. Solvability and a Norm Equivalence

We recall from the introduction that the strategy addressed in this paper is
to reserve one subset of orthonormal functions for carrying the information-
bearing coefficients and to determine coefficients for the remaining orthonormal
functions, so that the combined sum of functions has a small peak value. We
formalize this in the following definition.

Definition 2.3. The PAPR reduction problem is solvable for the orthonormal system
{φn}∞n=1 and the subset K ⊂ N with constant Cex if for every a ∈ l2(K), there
exists b ∈ l2(Kc) satisfying ‖b‖l2 (K c ) ≤ Cex‖a‖l2 (K ) such that

ess supt∈[0,1]

∣∣∣∣∣
∑
n∈K

anφn (t) +
∑

n∈K c

bnφn (t)

∣∣∣∣∣ ≤ Cex‖a‖l2 (K ) .

We may view the map from the coefficient vector a to a function with a small
peak as an extension operator. This operator is a map from l2(K) to L2([0, 1])
given by

EK a =
∑
n∈K

anφn (t) +
∑

n∈K c

bnφn (t).

Note that this map is not necessarily unique and is generally not linear; we shall
not discuss the construction of such a map. Nonetheless, since the map gives
a correspondence between l2(K) and L2([0, 1]), we refer to it as the extension
operator. Thus, we equivalently say that the PAPR reduction problem is solvable
for {φn}∞n=1 and K with extension norm Cex if there exists an extension operator
EK such that

‖EK ‖l2 (K )→L2 ([0,1]) ≤ Cex .

Note that we are interested only in the existence of an extension operator, and
that uniqueness is not part of the discussion. Clearly, the operator is generally
not linear.

The main results of this paper concern the proportion of signals that may be
used for information transmission under a peak-value constraint. Our approach,
however, builds on a further point, namely a relationship between PAPR reduc-
tion and an L1–L2-norm equivalence. Given an orthonormal system {φn}∞n=1 for
L2([0, 1]) and a subset K ⊂ N , we define

X :=
{

f : f ∈ L1([0, 1]), f =
∑
n∈K

anφn

}
.
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The torus is defined by

T = {z ∈ C : |z| = 1}.

Theorem 2.4. [Boche and Farrell 10] Let {φk}k∈N be an orthonormal basis for
L2([0, 1]), let K be a subset of N , and let X be as just defined. The PAPR
problem is solvable for the pair K and {φk}k∈N with extension norm Cex if and
only if

‖f‖L2 (T ) ≤ Cex‖f‖L1 (T ) (2.2)

for all f ∈ X.

While Theorem 2.4 is proved in [Boche and Farrell 10], we include the proof
here so that the role of the Hahn–Banach theorem is apparent. In particular,
the proof relies on the existence of a function, denoted by r below, for whose
construction there generally exists no method.

Proof. Assume first that the PAPR problem is solvable. Then for all s(t) =∑
k∈K akφk (t), ‖a‖l2 (Z) ≤ 1, we have

‖EK a‖L∞(T ) ≤ Cex‖s‖L2 (T ) ≤ Cex .

Since L∞(T ) ⊂ L2(T ), it follows that

EK s =
∑
k∈K

akφk +
∑

k∈N\K
bkφk .

Let f ∈ X, f(t) =
∑

k∈K ckφk (t), be arbitrary. Then∣∣∣∣∣
∑
k∈K

akck

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
k∈K

akck +
∑

k∈Z\K
bkck

∣∣∣∣∣∣ =
∣∣∣∣ 1
2π

∫
T

f(t)EK s(t)dt

∣∣∣∣
≤ ‖f‖L1 (T )‖EK s‖L∞(T ) ≤ Cex‖f‖L1 (T ) .

Set

ak =

{
ck/‖c‖l2 , ck 
= 0,

0, ck = 0.

Then

‖f‖L2 (T ) = ‖c‖l2 =
∣∣∣∣∑
k∈K

akck

∣∣∣∣ ≤ Cex‖f‖L1 (T ) .

Assume now that ‖f‖L2 (T ) ≤ Cex‖f‖L1 (T ) for all f ∈ X. Let a ∈ l2(Z) be
a sequence, supported in K, with finitely many nonzero terms and satisfying



272 Internet Mathematics

‖a‖l2 (Z) ≤ 1. Set s(t) =
∑

k∈K akφk (t). For f ∈ X, f(t) =
∑

k∈K ckφk (t), define
the functional Ψa by

Ψaf =
∑
k∈K

akck .

Since

|Ψaf | ≤ ‖a‖l2 (Z)‖c‖l2 (Z) ≤ ‖f‖L2 (T ) ≤ Cex‖f‖L1 (T ) ,

Ψa is continuous on X. Since X is a closed subspace of L1(T ), it follows by
the Hahn–Banach theorem that the functional Ψa has an extension ΨE to all
of L1(T ), where ‖Ψa‖ = ‖ΨE ‖. The dual of L1(T ) is L∞(T ). Thus, for some
r ∈ L∞(T ),

ΨE f = 〈f, r〉,
for all f ∈ L1(T ), so that ‖ΨE ‖ = ‖r‖L∞(T ) . Since L∞(T ) ⊂ L2(T ), r possesses
the unique expansion

r(t) =
∑
k∈N

dkφk (t)

for some d ∈ l2(Z). The sequences d and a agree on K, and we define EK s := r.

We will also address the case in which we have a finite set of basis functions
intended for information and a finite set reserved for peak reduction. We then
have a finite set {φk}N

k=1, which, of course, is then not an orthonormal basis
for L2([0, 1]). Consequently, we in general cannot represent the function r in
the proof above in terms of {φk}N

k=1. Nonetheless, we have one direction of
Theorem 2.4, which we state as a corollary.

Corollary 2.5. Let {φk}k∈N be a set of orthonormal functions in L2([0, 1]), let K

be a subset of N , and let X be as previously defined. If the PAPR problem is
solvable for the pair K and {φk}k∈N with extension norm Cex , then

‖f‖L2 (T ) ≤ Cex‖f‖L1 (T ) (2.3)

for all f ∈ X.

In the finite setting, if one can show that a constant C ex does not exist such
that the norm property in line (2.3) holds for all finite cardinalities, then it follows
that solvability cannot hold. Thus, to prove that solvability does not hold, we do
not use the two-way statement of Theorem 2.4, but just this one-way statement.
This will be our approach later.
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3. The Discrete Fourier Case

3.1. Density of Information Sets for OFDM

The discrete Fourier case is interesting for several reasons. First, the discrete
case implies the continuous case, and therefore delivers the result on the density
of tone reservation sets for OFDM. Additionally, the problem considered is ap-
plicable to a large number of areas and is valuable in its own right. The discrete
case is important for the PAPR problem because much of the work done with
signals is, of course, done with discretized versions of the signals. For example,
oversampling and zero-padding are used in the papers [Tellambura 01, Ilic and
Strohmer 09]. In some settings it is possible, using sampling results, to relate dis-
crete properties to analog properties, and therefore it is valuable to understand
the behavior in the discrete setting. In [Wunder and Boche 03], for example,
bounds on the PAPR of an OFDM signal are given in terms of samples of the
signal and the oversampling rate.

Definition 3.1. The N × N inverse discrete Fourier transform (DFT) matrix is given
by

Fjk =
1√
N

e−2πi(j−1)(k−1)/N .

This matrix is denoted by F , and for x ∈ l2N , Fx denotes this matrix applied
to x. We denote by F ∗ the Hermitian transpose or adjoint of F .

Definition 3.2. We denote by lpN the set C N viewed as a linear space with norm
‖x‖lpN

= (
∑N

i=1 |xi |p)1/p . The unit ball in lpN is denoted by Bp
N , i.e.,

Bp
N =

{
x ∈ lpN : ‖x‖lpN

≤ 1
}

.

Let {Nk}∞k=1 be a subsequence of N , and for each Nk , let INk
be a subset

of {1, . . . , Nk}; Ic
Nk

denotes {1, . . . , Nk} \ INk
. In analogy to Definition 2.3, we

say that the discrete PAPR problem is solvable for the sequences {Nk}∞k=1 and
{INk

}∞k=1 if there exists a constant Cex such that for each k, for all x ∈ l2Nk
with

supp(x) ⊂ INk
there exists a compensation vector r ∈ l2Nk

supported in Ic
Nk

such
that

‖F (x + r)‖l∞N k
≤ Cex√

Nk

‖x‖l2N k

.
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Theorem 3.3. Let {Nk}∞k=1 be a subsequence of N , and let INk
be a subset of

{1, . . . , Nk}. Let Yk = {y ∈ l2Nk
: supp(F ∗y) ⊂ INk

}. The discrete PAPR problem
is solvable for the sequence of sets {INk

}∞k=1 with constant Cex if and only if

‖y‖l2N k

≤ Cex√
Nk

‖y‖l1N k

for all y ∈ Yk .

In general, one has ‖y‖l2N k

≤ ‖y‖l1N k

for every vector y. Here, though, as k

increases, we eventually have Cex/
√

Nk < 1, and so the important point is that
Cex remains fixed.

Proof. Assume first that PAPR is solvable with constant Cex . Let N be an element
of {Nk}∞k=1. For IN ⊂ {1, . . . , N}, let Ic

N = {1, . . . , N} \ IN . Then for every x ∈
C N with supp(x) ⊂ IN , we can find an extension r ∈ C N with supp(r) ⊂ Ic

N

such that

F (x + r) ∈ Cex√
N

B∞
N .

We denote by lpN (IN ) elements of lpN with support contained in IN . Denote by
EIN

the operator that maps x to the compensated vector x + r. Then

‖FEIN
x‖l∞N ≤ Cex√

N
‖x‖l2N

, (3.1)

and so ‖FEIN
‖l2N (IN )→l∞N

≤ Cex/
√

N . As in the analog case, we take a vector b

with supp(b) ⊂ IN , and observe that

|〈b, EIN
x〉| = |〈Fb, FEIN

x〉| ≤ ‖Fb‖l1N
‖FEIN

x‖l∞N ≤ ‖Fb‖l1N

Cex√
N

‖x‖l2N
.

By setting

xk =

⎧⎨
⎩

bk

‖b‖ l2N
, bk 
= 0,

0, bk = 0,

we obtain

‖b‖l2N
= |〈b, b〉|2 = |〈b, EIN

x〉| ≤ Cex√
N

‖Fb‖l1N
.

Now let N be an element of {Nk}∞k=1. We take an element c ∈ l2N with
supp(c) ⊂ IN . Let Ψc be the functional acting on Y by

Ψcy = 〈c, F ∗y〉. (3.2)
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We then have

|Ψcy| ≤ ‖c‖l2N
‖y‖l2N

≤ Cex√
N

‖y‖l1N
‖c‖l2N

,

so that

‖Ψc‖ ≤ Cex√
N

‖c‖l2N
. (3.3)

Since Y is a closed subspace of l1N , by the Hahn–Banach theorem there exists
an extension ΨE of Ψc to all of l1N such that ‖Ψc‖ = ‖ΨE ‖, and then ΨE can be
represented by a vector r such that

ΨE y = 〈r, y〉
for all y ∈ l1N . Let c = Fr. If y ∈ Y and y = Fx, then 〈r, y〉 = 〈F ∗c, F ∗x〉 = 〈c, x〉.
Comparing this with (3.2), we see that c and c must agree on IN . That is, c is
an extension of c. Lastly, using (3.3), we obtain

‖ΨE ‖ = ‖r‖∞ = ‖Fc‖∞ ≤ Cex√
N

‖c‖l2N
.

For a set A, |A| denotes its cardinality.

Theorem 3.4. Let {Nk}∞k=1 be a subsequence of N and let INk
be the corresponding

sets as defined earlier. If

lim sup
n→∞

|INk
|

Nk
> 0,

then the discrete PAPR problem is not solvable.

The proof will use arithmetic progressions and Szemerédi’s theorem, Theo-
rem 3.6.

Definition 3.5. An arithmetic progression of length m is a subset of Z that has the
form {a, a + d, a + 2d, . . . . , a + (m − 1)d} for some integer a and some positive
integer d.

Theorem 3.6. [Tao 06, Theorem 1.2] For every integer m ≥ 1 and 0 < δ ≤ 1, there
exists an integer NSz(m, δ) ≥ 1 such that for every N ≥ NSz(m, δ), every set A ⊂
{1, . . . , N} of cardinality |A| ≥ δN contains at least one arithmetic progression
of length m.
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Proof of Theorem 3.4. By Theorem 3.6, there exists an integer N in the subsequence
{Nk}∞k=1 such that IN contains an arithmetic progression of length m. Assume
again that this progression is {a + dl}m−1

l=0 . Let D denote the vector of length
N with the value e2πi(a+dl)t/N /

√
m at the entries of the arithmetic progression,

where t will be addressed shortly. Then

‖FD‖l1N
=

N∑
j=1

|(FD)j | =
N∑

j=1

∣∣∣∣
N∑

l=1

FjlDl

∣∣∣∣ (3.4)

=
N∑

j=1

∣∣∣∣ 1√
N

1√
m

m−1∑
l=0

e−2πi(a+dl)t/N e2πidlj/N

∣∣∣∣
=

1√
m

1√
N

N∑
j=1

∣∣∣∣
m−1∑
l=0

e2πidl(t−j )/N

∣∣∣∣.
This calculation holds for every t, so we may take the t that minimizes the
absolute value:

min
t∈[0,1]

N∑
j=1

∣∣∣∣∣
m−1∑
l=0

e
2 π i d l ( t−j )

N

∣∣∣∣∣ = min
t∈[0,1]

N∑
j=1

∣∣∣∣∣ sin
πdm (t−j )

N

sin πd(t−j )
N

∣∣∣∣∣
≤
∫ 1

0

N∑
j=1

∣∣∣∣∣ sin
πdm (t−j )

N

sin πd(t−j )
N

∣∣∣∣∣ dt = N

∫ 1

0

∣∣∣∣∣ sin
πdmt

N

sin πdt
N

∣∣∣∣∣ dt ≤ N log m,

where the last step is the bound on the Dirichlet kernel. Now, returning to (3.4)
and defining D using the t that results in the minimum in the calculation above,
we have ‖FD‖l1N

≤ √
N log m/

√
m. If the discrete PAPR problem is solvable,

then by Theorem 3.3, we have a norm equivalence with a factor Cex/
√

N . How-
ever, we have just shown that Cex must be arbitrarily small. This contradiction
proves Theorem 3.4.

Our next result shows that one can have a norm equivalence on subspaces
given by subsets of the columns of the DFT matrix when the density converges
to zero fast enough.

Corollary 3.7. Let {Nk}∞k=1 be a subsequence of N and let INk
be the corresponding

sets as defined earlier. Assume that the compensation set is finite with indices
{−N, . . . , N} \ INk

. If

lim sup
k→∞

|INk
|

Nk
> 0,

then the PAPR problem is not solvable for the sequence of information sets{
e2πil·}

l∈IN k

.
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Proof. The proof of the previous theorem gives that inequality (3.1) cannot hold
for a common constant. Since the discrete case gives the values of the continuous
case on the regular N -point grid, it follows that there does not exist a universal
constant such that∥∥∥∥

N∑
l=1

e−2πil·xl +
N∑

l=1

e−2πil·yl

∥∥∥∥
L∞([0,1])

≤ Cex‖x‖l2 (IN ) , (3.5)

where supp(x) ⊂ IN and supp(y) ⊂ RN .

Note that the results of this section also give a bound on the size of subsets
for which one does have solvability. Namely, from Theorems 3.3 and 3.4, we see
that solvability with constant Cex implies that if m is the length of the longest
arithmetic progression in an information set IN , then

√
m/log m ≤ Cex . Thus,

for a given index set IN , one can determine its long arithmetic progression and
obtain a lower bound on the extension norm.

3.2. Examples of Solvability and Projection Properties

The next theorem gives a condition on a subset of N such that one has a bounded
extension constant. The sacrifice, however, is that the information set has a
density converging exponentially fast to 0.

Theorem 3.8. Let RN = {rl}L
l=1 be a subset of {1, . . . , N} satisfying rk ≥ λrk−1 for

some λ > 1, and where N is chosen such that N = λrL . There exists a constant
C(λ) depending only on λ such that for all a ∈ l2N supported on RN ,

‖a‖l2N
≤ C(λ)√

N
‖Fa‖l1N

.

The theorem should be compared with Theorem 4.14, its counterpart for the
Walsh setting. In the theorem just stated, λ provides for both a proportion of
functions with frequencies higher than rL and the solvability in the first place.
This latter aspect is due to the following result of Paley.

Theorem 3.9. [Wojtaszczyk 91, Section I.B.8] Let 0 < p < ∞ and let {nk}∞k=1 be a
subsequence of N such that infk∈N nk+1/nk = λ > 1. Then there exist constants
A(λ, p) and B(λ, p) such that for all sequences with only finitely many nonzero
terms,

A(λ, p)
∥∥∥∥

∞∑
i=k

akeik ·
∥∥∥∥

Lp ([0,1])
≤
∥∥∥∥

∞∑
k=1

akeik ·
∥∥∥∥

L2 ([0,1])
≤ B(λ, p)

∥∥∥∥
∞∑

k=1

akeik ·
∥∥∥∥

Lp ([0,1])
.
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Proof of Theorem 3.8. Assume that a ∈ l2N is supported on RN , and define

f(t) =
L∑

l=1

arl
eirl t .

We define a set of kernels that allow us to represent f in terms of its samples:

KN,λ =
{

K(t) =
rL∑

k=−rL

eikt +
−rL −1∑
k=−N

dkeikt +
N∑

k=rL +1

dkeikt ,

where dk = d−k for k = rL + 1, . . . , N

}
.

For every kernel K ∈ Kλ,N , we have

f(t) =
1
N

N∑
l=0

f

(
2πl

N

)
K

(
t − 2πl

N

)
.

Then, using Theorem 3.9, we obtain

‖a‖l2N
= ‖f‖L2 ([0,1]) (3.6)

≤ B(λ, 1)‖f‖L1 ([0,1]) = B(λ, 1)
∥∥∥∥ 1

N

N∑
l=0

f

(
2πl

N

)
K

(
· − 2πl

N

)∥∥∥∥
L1 ([0,1])

≤ B(λ, 1)
N

N∑
l=0

∣∣∣∣f
(

2πl

N

)∣∣∣∣
∥∥∥∥K

(
· − 2πl

N

)∥∥∥∥
L1 ([0,1])

=
B(λ, 1)

N

N∑
l=0

∣∣∣∣f
(

2πl

N

)∣∣∣∣ ‖K‖L1 ([0,1]) (3.7)

= B(λ, 1)‖K‖L1 ([0,1])
1
N

N∑
l=0

∣∣∣∣f
(

2πl

N

)∣∣∣∣ ,
where in (3.7) we use the shift-invariance of the ‖ · ‖L1 (T )-norm for any K.

Setting dk = (N − rL − k/2) for k = rL , . . . , N and

K(t) =
1

N − rL

( N∑
k=0

Dk (t) −
rL∑

k=0

Dk (t)
)

,

we may define f + gλN to be the convolution of f + g with K. The Fourier
expansion of f + gN is supported on {−N, . . . , N} and agrees with a on {rk}∞k=1.
Using PK to denote the projection given by convolution with K, we have

‖f + gN ‖L∞(T ) ≤ ‖PK ‖‖f + g‖L∞(T ) ≤ Cex‖a‖l2 (Z)‖PK ‖. (3.8)



Boche and Farrell: Peak-to-Average Power Ratio Reduction Problem for Orthogonal Transmission 279

The norm ‖PK ‖ is the ‖ · ‖L1 (T )-norm of K. We will construct K using two Fejér
kernels. We recall that the Dirichlet kernel is defined by

Dn (t) =
n∑

k=−n

eikt ,

and the Fejér kernel by

Fn (t) =
1
n

n−1∑
k=0

Dn =
(

sin nt
2

sin t
2

)2

. (3.9)

Thus, for every m > l,

m∑
k=0

Dk −
l∑

k=0

Dk = (m − l)
2l−m∑
k=0

(
eikt + e−ikt

)

+
2(m−l)∑

k=1

(
m − l − k

2

)(
ei(2l−m+k)t + e−i(2l−m+k)t

)
.

Using the positivity given in (3.9), we obtain

‖K‖L1 ([0,1]) =
∫ 1

0

∣∣∣∣∣ 1
N − rL

(
N∑

k=0

Dk (t) −
rL∑

k=0

Dk (t)

)∣∣∣∣∣ dt

≤ 1
N − rL

∫ 1

0

λrL∑
k=0

Dk (t) +
rL∑

k=0

Dk (t)dt

≤ 2N

N − rL
≤ 2λ

λ − 1
.

Returning to (3.8), we have

‖f + gN ‖L∞(T ) ≤ 2λ

λ − 1
Cex‖a‖l2 (Z) ,

where the Fourier expansion of gN is supported on {N, . . . , N} \ IN .
Returning to (3.6), we now have

‖a‖l2N
≤ 2λB(λ, 1)

λ − 1
1
N

N∑
l=0

∣∣∣∣f
(

2πl

N

)∣∣∣∣
=

2λB(λ, 1)
λ − 1

1√
N

N∑
l=0

∣∣∣∣ 1√
N

L∑
k=1

ark
e2πirk l/N

∣∣∣∣
=

2λB(λ, 1)
λ − 1

1√
N

‖Fa‖l1N
.
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4. The Walsh or CDMA Case

4.1. PAPR and Density for Walsh or CDMA Systems

PAPR has been studied extensively in OFDM systems. In this section, we show
that the same type of behavior occurs as well in the downlink of direct sequence–
code division multiple access (DS-CDMA) systems. We assume again, without
loss of generality, that the symbol period is normalized to length 1. Assume
that a base station communicates with N = 2n users. DS-CDMA then uses 2n

orthogonal functions that take the value 1 or −1 on intervals of length 2−n . These
functions are the spreading sequences. We denote these sequences by {wk}2n

k=1,
and we will give their specific values shortly. The base station then transmits

s(t) =
2n∑

k=1

dkwk (t) for t ∈ [0, 1] (4.1)

to transmit the coefficient dk to user k.
However, Proposition 2.2 applies here, and so the function in (4.1) can achieve

peaks of size
√

2n . We note that in the uplink, each user transmits only one
signal wk , and so there is not the accumulation of signals that leads to the high
peaks that can occur in the downlink. Thus, in order to reduce the PAPR of
DS-CDMA downlink signals, one could reserve certain spreading sequences to
be used for compensation, in analogy to tone reservation for OFDM.

There are several ways to define the Walsh system, though the definitions in-
volve only a different ordering. We present one definition now, and will comment
on another in Section 4.3. The various definitions may be found in the first sev-
eral pages of [Schipp et al. 90]. The following is the original ordering given in
[Walsh 23], and is the system used in the downlink for the IS-95 standard and
UMTS-IMT-2000.

Definition 4.1. The Rademacher functions, denoted by r0 , r1 , . . . , are defined on
[0, 1] by

rk (t) = sgn sin(2π2k t),

where we define sgn 0 = −1. The Walsh functions, denoted by w1 , w2 , . . . , are
defined using the Rademacher functions by

w1(t) = 1 and w2k +m (t) = rk (t) · wm (t)

for k = 0, 1, 2, . . . and m = 1, . . . , 2k .

See [Fine 49] for the fundamental properties of the Walsh functions.
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We are able to obtain specific bounds on Cex in the Walsh case and therefore
can state more precise results than in the discrete Fourier case. Our main result
concerning the Walsh functions is the following.

Theorem 4.2. Let δ ∈ (0, 1) be a density and assume that N = 2n (n ∈ N ) satisfies
N ≥ ( 2

δ )m+1 for some m ∈ N . If the PAPR problem is solvable with constant Cex

for a subset of indices Y ⊂ {1, . . . , N} for |Y |/N ≥ δ, then

Cex ≥ 2m − m2

1 + m
.

We need several lemmas before we can prove the theorem. We begin with a
definition.

Definition 4.3. The correlation function between wr and I is

C(wr , I) =
∫ 1

0
wr (x)

∣∣∣∣∑
k∈I

wk (x)
∣∣∣∣
2

dx.

Further, for wr and I, we define the set

M(wr , I) = {k ∈ I : there exists k̃ ∈ I s.t. wk (x)wk̃ (x) = wr (x) ∀x ∈ [0, 1]}.

We could equivalently look at the set of all pairs (k, k̃) such that wkwk̃ = wr ,
which would always include the permutation (k̃, k). For every k ∈ M(wr , I),
there is exactly one k̃ in M(wr , I) such that the pair k and k̃ satisfy the require-
ment given for M(wr , I). To see this, suppose that k̃1 and k̃2 both satisfy

wkwk̃1
= wr = wkwk̃2

. (4.2)

Then since wkwk = 1 for every k, multiplying (4.2) by wk , we have

wk̃1
= wk̃2

. (4.3)

Remark 4.4. The reader unfamiliar with the Walsh functions may find it helpful
to read the proof of Theorem 4.11. The properties used in the proof below are
contained in the latter proof. In particular, the central idea of the proof of the
main lemma, Lemma 4.9, relies on the identity in (4.8). This equality gives
a representation of the sum of Walsh functions as a product of factors (1 +
rk ) for the appropriate Rademacher functions. This property and the fact that
multiplying the set of Walsh functions (other than w1) by a Walsh function
gives a permutation of the Walsh functions leads to the idea of expressing a
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linear combination of Walsh functions as a product. If this is done correctly, one
can obtain the L1 and L2 properties necessary for the theorem.

Lemma 4.5. The following equality holds:

C(wr , I) = |M(wr , I)|.

Proof. We have

C(wr , I) =
∫ 1

0
wr (x)

(∑
k1 ∈I

wk1 (x)
)(∑

k2 ∈I

wk2 (x)
)

dx

=
∑
k1 ∈I

∑
k2 ∈I

∫ 1

0
wr (x)wk1 (x)wk2 (x)dx. (4.4)

For 1 ≤ r, k1 , k2 ≤ N , we have wrwk1 wk2 = wr̃ for some 1 ≤ r̃ ≤ N . Therefore,
the integral in (4.4) is nonzero only when wrwk1 wk2 = w1 = 1, that is, when
wr = wk1 wk2 . This is the set of all pairs of k1 and k2 such that this holds. In
light of the comment following the definition of M(wr , I), the lemma is proved.

An important monotonicity property follows from this lemma.

Corollary 4.6. Assume that C(r, I) = 0. Then C(r, Ĩ) = 0 for all Ĩ ⊂ I.

Proof. This follows from

0 = C(wr , I) = |M(wr , I)| ≥ |M(wr , Ĩ)| = C(wr , Ĩ).

Lemma 4.7. If N = 2n for a positive integer n, then
N∑

r=1

C(wr , I) = |I|2 .

Proof. Recall that for x ∈ [0, 1
N ), wr (x) = 1 for all r. And since N = 2n , it follows

that
∑N

r=1 wr (x) = 0 for all x ∈ [ 1
N , 1]. See, for example, [Fine 49]. Therefore,

N∑
r=1

C(wr , I) =
∫ 1

0

N∑
r=1

wr (x)
∣∣∣∣∑
k∈I

wk (x)
∣∣∣∣
2

dx = N

∫ 1/N

0

∣∣∣∣∑
k∈I

wk (x)
∣∣∣∣
2

dx

= N

∫ 1/N

0
|I|2 dx = |I|2 ,

which completes the proof.
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Definition 4.8. If f is a linear combination of Walsh functions, we define supp(f) to
be the set of indices corresponding to the functions in the sum.

Lemma 4.9. Let δ be a density, that is, δ ∈ (0, 1). For m > 1, if N = 2n , n ∈ N ,
satisfies N ≥ (2/δ)m+1 , then for every subset I ⊂ {1, . . . , N} satisfying |I|/N ≥
δ, there exists a function f supported on I such that

‖f‖L2 ([0,1]) ≥ 2m − m2 and ‖f‖L1 ([0,1]) ≤ 1 + m.

Proof. First we just take N to be large and I to be a subset of {1, . . . , N}. We will
construct a function with the norm properties given, and then we will show that
m can be made large in dependence on δ and N .

Suppose that M(wr , I) = {l1 , . . . , l2k}. Then

wr · {wl1 , . . . , wl2 k
} = {wl1 , . . . , wl2 k

}.

Also, suppose that wlj wlj + 1 = wr for j = 1, . . . , k. Then wrwj = wj+1 for each j.
Therefore, we may select the subset {wl1 , wl3 , . . . , wl2 k −1 } and obtain the prop-
erties

wr · {wl1 , wl3 , . . . , wl2 k −1 } = {wl2 , wl4 , . . . , wl2 k
}

and

wr · {wl1 , wl3 , . . . , wl2 k −1 } ∩ {wl2 , wl4 , . . . , wl2 k
} = ∅.

We use this splitting to select a set that does not allow for any factoring of
w(1) . We use the notation I

(1)
A and I

(1)
B to denote a splitting of I(1) in the

way just described. Since C(w(1) , I(1)) = |M(w(1) , I(1))| and w(1) cannot be re-
alized as the product of any two Walsh functions with indices in I(1) , we have
C(w(1) , I(1)) = 0. Lastly, we also have |I(1) | = 1

2 |M(wr , I)|.
Let w(1) be the Walsh function with the highest correlation with I, that is,

C(w(1) , I) = max
w=w 2 ,...,wN

C(w, I).

Since C(w, I) = |M(w, I)|, the maximizer w(1) is the Walsh function whose index
corresponds to the subset of I with the greatest number of splittings contained
in I.

Now set I(2) = M (
w(1) , I(1)

)
, and define I

(2)
A and I

(2)
B accordingly. We repeat

this until ultimately, I(m ) = {im,1 , im,2} for two indices such that wim , 1 wim , 2 =
w(m ) . We have then selected Walsh functions w(1) , w(2) , . . . , w(m ) and determined
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sets I
(1)
A , I

(1)
B , . . . , I

(m )
A , I

(m )
B such that for j = 1, . . . , m,

w(j )I
(j )
A = I

(j )
B , I

(j )
A = w(j )I

(j )
B ,

w(j )I
(j )
A ∩ I

(j )
B = ∅, I

(j )
A ∪ I

(j )
B = I(j ) , (4.5)

Define

F0 =
{

f : f(x) =
∑
k∈I

αkwk (x), αk ∈ {0, 1}, at least one αk 
= 0
}

,

and for l = 1, . . . , m, define

Fl =
{

f : f(x) =
∑

k∈I ( l )

αkwk (x), αk ∈ {0, 1}, at least one αk 
= 0
}

.

Now we construct our desired function. We have w(m ) = wim , 1 wim , 2 , so that
w(m )wim , 2 = wim , 1 . Then

(1 + wim , 2 )w
(m ) = wim , 1 + wim , 2 ∈ I(m ) ⊂ I

(m−1)
A . (4.6)

The two Walsh functions in the sum (4.6) are unique. Thus

(1 + wim , 2 )w
(m ) ∈ F (m ) ,

and we set

f (m ) = (1 + wim , 2 )w
(m ) .

Now we repeat this by looking at(
1 + w(m−1)

)
f (m ) .

By the properties given in (4.5) and (4.6), we have supp(w(m−1)f (m )) ⊂ I
(m−1)
B ,

while supp(f (m )) ⊂ I
(m−1)
A . Thus (1 + w(m−1))f (m ) has four unique terms and is

contained in F (m−1) . We denote it by f (m−1) . Similarly, (1 + w(m−2))f (m−2) has
eight unique terms and is contained in F (m−2) . We continue this and ultimately
arrive at f (0) ∈ F (0) ; f (0) is the sum of 2m unique Walsh functions, and in
particular,

1 + f (0) =
m∏

l=1

(1 + w(l)) −
m∑

l=1

w(l) .
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This yields the bounds∫ 1

0

∣∣∣1 + f (0)(x)
∣∣∣2 dx =

∫ 1

0

∣∣∣∣
m∏

l=1

(1 + w(l)(x)) −
m∑

l=1

w(l)
∣∣∣∣
2

dx

≥
∫ 1

0

∣∣∣∣
m∏

l=1

(1 + w(l)(x))
∣∣∣∣
2

dx − m2 =
∫ 1

0

m∏
l=1

|1 + w(l)(x)|2 dx − m2

=
∫ 1

0

m∏
l=1

2(1 + w(l)(x)) dx − m2 = 2m − m2

and∫ 1

0

∣∣∣1 + f (0)(x)
∣∣∣ dx =

∫ 1

0

∣∣∣∣∣
m∏

l=1

(1 + w(l)(x)) −
m∑

l=1

w(l)

∣∣∣∣∣ dx

≤
∫ 1

0

∣∣∣∣∣
m∏

l=1

(1 + w(l)(x))

∣∣∣∣∣ dx + m =
∫ 1

0

m∏
l=1

(1 + w(l)(x))dx + m = 1 + m.

Now it remains to obtain a lower bound on m. We have

|I(1) | =
1
2

∣∣∣M(w(1) , I)
∣∣∣ .

Using Lemma 4.7, we obtain

∣∣∣I(1)
∣∣∣ = 1

2

∣∣∣M(w(1) , I)
∣∣∣ = 1

2
max

wr 
=w 1
C(wr , I) ≥ 1

2
1
N

N∑
r=1

C(wr , I) =
1
2
|I|2
N

≥ δ

2
|I|.

Similarly, ∣∣∣I(k)
∣∣∣ ≥ δ

2

∣∣∣I(k−1)
∣∣∣ when |I(k−1) | ≥ 4.

If the process goes until m, then |I(m ) | ≥ ( δ
2 )m δN . If N ≥ ( 2

δ )m+1, then
( δ

2 )m δN ≥ 2, and thus the set splitting can be performed m times.

Proof of Theorem 4.2. By Corollary 2.5, solvability implies that for all f with support
in Y , we have

‖f‖L2 (T ) ≤ Cex‖f‖L1 (T ) .

By Lemma 4.9, we have

Cex ≥ 2m − m2

1 + m

and the proof is complete.

We return to the statement of Theorem 4.2. Suppose that a certain δ is fixed.
Then as N increases, the largest value for m that still satisfies N ≥ ( 2

δ )m+1
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increases. Thus the lower bound on Cex increases as N increases. That is, given
a density δ and a number of Walsh functions N , one knows a lower bound for
the best possible extension norm. In particular, for a fixed δ, there does not exist
a uniform extension constant.

As stated in Remark 4.4, the two fundamental properties here are the permu-
tation of the Walsh functions when multiplied by another Walsh function and
the representation of the sum as a product. Indeed, we only needed to find m

Walsh functions such that their products are all unique and supported in I. The
m functions also need not have indices in I. The product terms then disappear
for the L1-norm but not for the L2-norm. The first steps of this approach also
work for the Fourier case, since the properties just listed hold there as well. One
can also define a correlation function and look for splittings of maximum cardi-
nality. The approach encounters a difficulty, though, when we try to obtain an
upper L1 bound on the product that was easily bounded in the Walsh case.

4.2. Solvability of PAPR for Direct Sequence CDMA and Localized Behavior of the Walsh System

We have several positive results for cases in which the density of the information
set converges to zero. Here, the Fourier and Walsh systems have a property in
common. In particular, similar to Theorem 3.8 in the Fourier case, we show
that if the information set is the dyadic integers, then any information-bearing
signal can be compensated by a signal supported on the remaining indices. This
is Theorem 4.13. Therefore, the Fourier and Walsh systems behave similarly as
far as density and solvability are concerned, and they differ in terms of their
projection properties. En route to the last results, we require several definitions.
We finish the section with Theorem 4.19, which gives a matrix embedding for
Hadamard matrices.

Theorem 4.10. (Khintchine’s inequality.) [Wojtaszczyk 91, I.B.8] There exist constants Ap

and Bp , 0 < p < ∞, such that for all finite sequences of scalars (ai)n
i=1 ,

Ap

∥∥∥∥
n∑

i=1

airi

∥∥∥∥
Lp ([0,1])

≤ ‖a‖l2 (N ) =
∥∥∥∥

n∑
i=1

airi

∥∥∥∥
L2 ([0,1])

≤ Bp

∥∥∥∥
n∑

i=1

airi

∥∥∥∥
Lp ([0,1])

.

The Walsh system has a very special property: projection operators mapping
bounded functions onto the span of the first 2k Walsh functions are uniformly
bounded with norm 1. Thus, when we combine this projection property with
Khintchine’s inequality, we obtain a statement for finite sets. While the following
material may be found in [Fine 49], we include the proof of Theorem 4.11 for
the reader’s convenience and to emphasize the unique properties of the Walsh
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system. Theorems 4.13 to 4.17 are easy to understand once one has read through
the proof below. Equation (4.10) of the proof shows that the dyadic Lebesgue
constants are 1 for the Walsh system, which is a fundamentally different behavior
from the log N behavior that occurs in the Fourier case.

Theorem 4.11. Let P2n denote the projection onto {w1 , . . . , w2n }. Then

‖P2n ‖C([0,1])→L∞([0,1]) = 1

for all n ∈ N , and if f ∈ C([0, 1]), then for all x ∈ [0, 1],

lim
n→∞(P2n f)(x) = f(x).

Proof. The projection of f ∈ L2([0, 1]) onto wn is

cn =
∫ 1

0
wn (x)f(x)dx.

We consider the projection onto {wk}n
k=1 at the point x and denote this by

sn (x, f):

sn (x, f) =
n∑

k=1

ckwk (x).

Equivalently,

sn (x, f) =
∫ 1

0

n∑
k=1

f(t)wk (t)wk (x) dt.

Then

s2n (x, f) =
∫ 1

0

2n∑
k=1

f(t)wk (t)wk (x)dt. (4.7)

We are interested in the sum
2n∑

k=1

wk (t)wk (x);

however, this is just the sum of all possible products of
{r0(x)r0(t), . . . , rn (x)rn (t)}, and so

2n∑
k=1

wk (t)wk (x) =
n∏

k=1

(1 + rk (x)rk (t)). (4.8)

If x and t are in the same dyadic interval of length 2−n , then rk (x)rk (t) = 1 for
k = 1, . . . , n. But if there exists k less than or equal n such that x and t are not
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in the same dyadic interval of length 2−k , then rk (x)rk (t) = −1. This is due to
the fact that one term must equal 1 and the other must equal −1. In this case,
the product (4.8) must equal zero. Defining

D2n (x, t) =
2n∑

k=1

wk (t)wk (x),

we then have

D2n (x, t) =

{
2n , x, t in the same dyadic interval of length 2−n ,

0, x, t not in the same dyadic interval of length 2−n .
(4.9)

Then

(P2n f)(x) =
∫ 1

0
f(t)D2n (x, t)dt.

If x ∈ Im :=
[

m−1
2n , m

2n

]
, then using (4.9), we obtain

‖P2n ‖C([0,1])→C([0,1]) = sup
f∈C([0,1]),

‖f ‖L ∞( [ 0 , 1 ] ) =1

∫ 1

0
f(t)D2n (x, t)dt =

∫
Im

D2n (x, t) dt = 1.

(4.10)

This proves the first claim.
For x ∈ [0, 1] define αn (x) and βn (x) by taking them to satisfy the following

statement for an appropriate integer m:

αn (x) = m2−n ≤ x < (m + 1)2−n = βn (x).

Now returning to (4.7), we have

s2n (x, f) =
∫ 1

0
f(t)D2n (x, t) dt = 2n

∫ βn (x)

αn (x)
f(t) dt =

F (βn (x)) − F (αn (x))
βn (x) − αn (x)

,

where F (x) is an integral of f(x). Since f is assumed to be continuous, we have

lim
n→∞(P2n f)(x) = f(x),

and we are done.

We include here the following theorem, which is proved in [Boche and Far-
rell 10], in order to contrast the projection behavior of the Fourier and Walsh
bases. The additional redundancy of a factor of λ frequencies in the compensa-
tion set is necessary to obtain the theorem below. For a given extension norm,
as the size of the information-bearing set increases, not only does the compensa-
tion set have to increase proportionally, but the set of extra frequencies included
beyond the highest frequency must also grow proportionally. We will return to



Boche and Farrell: Peak-to-Average Power Ratio Reduction Problem for Orthogonal Transmission 289

this when we discuss the behavior of the Walsh system, where one can project
sharply.

Theorem 4.12. [Boche and Farrell 10] Suppose that IN is a subset of {−N, . . . , N}
and that for every a ∈ l2(Z) supported on IN , the PAPR reduction problem
is solvable with an extension sequence supported on Z \ IN and with exten-
sion bound Cex . Assume λ > 1 and that λN is an integer. Then the PAPR
reduction problem is also solvable with an extension sequence supported on
{−λN, . . . , λN} \ IN with extension constant 2λ

λ−1 Cex .

The next theorem addresses the same question for the Walsh system. The
significant point here is that with Walsh functions, one may work with only the
dyadic set in which the information-bearing coefficients are contained. There is
nothing gained or lost by using or not using any Walsh functions beyond this
dyadic set.

Theorem 4.13. Suppose that IN is a subset of {1, 2, 3, . . . . , N} and that for every
function f of the form

f(t) =
∑

k∈I2 n

akwk (t),

there exists a compensation function with coefficient vector a supported on N \ IN

such that the combined signal has ‖ · ‖L∞(T )-norm at most Cex‖a‖l2 (N ). Let n be
the smallest integer such that N ≤ 2n . Then there exists a compensation function
with coefficients supported on {k}2n

k=1 \ IN such that the ‖ · ‖L∞(T )-norm of the
combined signal is still at most Cex‖a‖l2 (N ).

Proof. By Theorem 4.11, we may simply project the original combined function
onto the span of {wk}2n

k=1 and maintain the same norm.

Now we may consider a special case of Theorem 4.13, for which we know that
the PAPR reduction problem is solvable, namely when IN is the set of dyadic
integers.

Theorem 4.14. Let B1 be the constant given in Khintchine’s inequality (Theo-
rem 4.10). Then for every function of the form

n∑
k=1

a2k w2k (t),
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there exists a vector b ∈ l22n supported on {k}2n

k=1 \ {2k}n
k=1 and with norm

‖b‖l22 n
≤ B1‖a‖l22 n

such that

∥∥∥∥
n∑

k=1

a2k w2k +
∑

{k}2 n

k = 1 \{2k }n
k = 1

bkwk

∥∥∥∥
L∞([0,1])

≤ B1‖a‖l22 n
.

Proof. We may take the subset K in Theorem 2.4 to be {2k}n
k=1. (Theorem 2.4 of

course holds when Lp(T ) is replaced by Lp([0, 1]).) Khintchine’s inequality (4.10)
gives the norm equivalence, and thus there exists a sequence b ∈ N \ {2k}n

k=1 such
that ∥∥∥∥

n∑
k=1

a2k w2k +
∑

N\{2k }n
k = 1

bkwk

∥∥∥∥
L∞([0,1])

≤ B1‖a‖l22 n
. (4.11)

Applying Theorem 4.13 to the function in (4.11) proves the theorem.

We define an optimal subset size for the Walsh system.

Definition 4.15. (Optimal subset size–Walsh.) We define

EN (Cex ,W ) = max{|IN |, IN ⊂ {1, . . . , N}, such that
PAPR is solvable for IN with constant Cex},

where W refers to the Walsh system.

The following result shows that for a given extension constant, the efficiency
of the optimal subset does not increase as the dimension increases. This means
that we have strict monotone convergence on dyadic subsets of N . The result is
stronger than an asymptotic statement: it holds for all dyadic Walsh subsets.

Theorem 4.16. For the Walsh system, the optimal subsets satisfy the following in-
equality:

2E2m (Cex ,W ) ≥ E2m + 1 (Cex ,W )

for all constants Cex .

Proof. We will call a subset of {0, . . . , 2m} an optimal subset for the constant
Cex if the PAPR reduction problem is solvable for the subset with constant
Cex and there is no other subset of greater cardinality for which this holds. Let
I∗2m + 1 denote an optimal subset of {0, . . . , 2m+1} and I∗2m an optimal subset of
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{0, . . . , 2m}. First define

I(1) = {0, 1, . . . , 2m} ∩ I∗2m + 1 .

For c ∈ l2(I(1)), let fc,2m + 1 denote the extension function in span{w0 , . . . , w2m + 1 }
that satisfies

‖fc,2m + 1 ‖L∞([0,1]) ≤ Cex‖c‖l2 (I ( 1 ) ) .

By Theorem 4.11, we also have

‖P2m fc,2m + 1 ‖L∞([0,1]) ≤ ‖fc,2m + 1 ‖L∞([0,1]) ≤ Cex‖c‖l2 (I ( 1 ) ) .

So, if we define fc,2m = P2m fc,2m + 1 , then fc,2m is also a solution for c ∈ l2
(
I(1)

)
with constant Cex . Now, since we assumed that I∗2m is an optimal subset, we
must have |I(1) | ≤ |I∗2m |.

Now we define I(2) by

I(2) =
{
2m , . . . , 2m+1} ∩ I∗2m + 1 .

We define P (2) and Q(2) by

(P (2)f)(t) = (P2m + 1 f − P2m )(t) =
2m + 1∑
k=2m

ck (f)wk (t) = w2m

2m + 1∑
k=2m

ck (f)wk−2m (t)

= w2m (t)(Q(2)f)(t).

Note that Q(2) maps into span{w0 , . . . , w2m }. Since |w2m (t)| = 1, we have

‖P (2)f‖L∞([0,1]) = ‖Q(2)f‖L∞([0,1]) .

We can now do the same calculation for the Lebesgue constants for Q(2) that
was done in Theorem 4.11 and determine that ‖Q(2)‖ = 1. Thus,

‖P (2)f‖L∞([0,1]) = ‖Q(2)f‖L∞([0,1]) ≤ ‖f‖L∞([0,1]) .

Let c ∈ l2(I(2)), and suppose that f
(2)
c,2m + 1 is the extension function in

span{w0 , . . . , w2m + 1 }
that satisfies

‖f (2)
c,2m + 1 ‖L∞([0,1]) ≤ Cex‖c‖l2 (I ( 2 ) ) .

Then ∥∥∥Q(2)f
(2)
c,2m + 1

∥∥∥
L∞([0,1])

≤
∥∥∥f (2)

c,2m + 1

∥∥∥
L∞([0,1])

≤ Cex‖c‖l2 (I ( 2 ) ) .

Setting

I(2) =
{

j ∈ {0, . . . , 2m} : j + 2m ∈ I(2)
}

,
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since Q(2) maps onto span{0, . . . , 2m}, we have established solvability with the
same constant on I(2) , so that |I(2) | ≤ |I∗2m |. Finally,

|I∗2m + 1 | = |I(1) ∪ I(2) | = |I(1) | + |I(2) | = |I(1) | + |I(2) | ≤ 2|I∗2m |,
which completes the proof.

The following proposition is a simple consequence of the projection property
for the Walsh system. It shows that if the information coefficients are all sup-
ported on a subset of {1, . . . , 2m}, then there is nothing to be gained by including
Walsh functions with index higher than 2m for the compensation. Thus, compen-
sation in the Walsh system is a local problem for dyadic sets of integers. This is
in strong contrast to the Fourier system, where, as can be seen in Theorem 4.12,
it is necessary to include tones at a certain redundancy factor beyond the largest
element of the subset.

We introduce two new terms. For c ∈ l2(I∗2m ) and r ≥ m, we define

Interp(c, r, I∗2m ) = {f ∈ span{w0 , . . . , w2r } : ck (f) = ck ∀ k ∈ L∗
2m }

and

Cex(r, I
∗
2m ) = sup

‖c‖l 2 ( I ∗
2 m )

(
inf

f ∈ Interp(c,r,I ∗
2 m )

‖f‖L∞([0,1])

)
.

Proposition 4.17. For all r ≥ m,

Cex(r, I
∗
2m ) = Cex(m, I∗2m ).

Proof. Suppose that

Cex(r, I
∗
2m ) < Cex(m, I∗2m ). (4.12)

Then for every ε > 0,

inf
f ∈ Interp(c,r,I ∗

2 m )
‖f‖L∞([0,1]) < (Cex(r, I

∗
2m ) + ε) ‖c‖l2 (I ∗

2 m )

and

inf
f ∈ Interp(c,r,I ∗

2 m )
‖P2m f‖L∞([0,1]) ≤ inf

f ∈ Interp(c,r,I ∗
2 m )

‖f‖L∞([0,1])

< (Cex(r, I
∗
2m ) + ε) ‖c‖l2 (I ∗

2 m ) ,

which contradicts the assumption (4.12).



Boche and Farrell: Peak-to-Average Power Ratio Reduction Problem for Orthogonal Transmission 293

4.3. Matrix Results Related to the Walsh System

We give a result for matrices that is analogous to the DFT matrix for the Walsh
system. As we have seen throughout this section and the last, the Walsh system
differs from the Fourier system in that results for the Walsh system hold for the
dyadic sets of integers and do not require the redundancy needed in the Fourier
case. This is seen again by comparing Proposition 4.19 here with Proposition 3.8
in the Fourier case.

Definition 4.18. The Rademacher matrix Rk : C k → C 2k
is defined by

(Rk )i,j =
1√
2k

rj

(
i

2k

)
.

The Hadamard matrices are defined inductively as follows:

H1 = [1], H2 =
1√
2

[
1 1
1 −1

]
,

and

H2k + 1 =
1√

2k+1

[
H2k H2k

H2k −H2k

]

for k = 2, 3, . . . .

The Hadamard matrices are orthogonal and correspond to the Walsh system
in that

(H2k )i,j =
1√
2k

wj

(
i

2k

)
.

Moreover, the Walsh system can be obtained from the Haar system by multiply-
ing the Haar basis elements, represented as finite vectors, by the appropriate-size
Hadamard matrix. See [Schipp et al. 90, Section 1.4].

Proposition 4.19. There exists a constant B1 such that for all k,

‖a‖l2k
≤ B1√

2k
‖Rka‖l1

2 k
.

And in dimension 2k , for all vectors a supported on the set D = 1, 2, 4, 8, . . . , 2k ,

‖a‖l2
2 k

≤ B1√
2k

‖H2k a‖l1
2 k

.
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Proof. We use that r1 , . . . , rk are constant on the intervals
(

j−1
2k , j

2k

]
for j =

1, . . . , 2k . Using the Khintchine inequality, we have

‖a‖l2k
=
∥∥∥∥

n∑
i=1

airi

∥∥∥∥
L2 ([0,1])

≤ B1

∥∥∥∥
n∑

i=1

airi

∥∥∥∥
L1 ([0,1])

= B1

∫ 1

0

∣∣∣∣
k∑

i=1

airi(t)
∣∣∣∣dt

= B1
1
2k

2k∑
l=1

∣∣∣∣
k∑

i=1

airi

(
l

2k

)∣∣∣∣ = B1
1√
2k

2k∑
l=1

∣∣∣∣ 1√
2k

k∑
i=1

airi

(
l

2k

)∣∣∣∣
=

B1√
2k

‖Rka‖l1
2 k

.

For the second statement, we simply note that for a supported on 1, 2, 4, . . . , 2k ,

∥∥∥∥
2k∑
i=1

aiwi

∥∥∥∥
L2 ([0,1])

=
∥∥∥∥

k∑
i=1

a2i ri

∥∥∥∥
L2 ([0,1])

,

so that the same calculation proves the claim.

5. Conclusion and Discussion

We have provided a contribution toward an understanding of the relationship
between the peak values of a signal and the proportion of orthonormal signals
that can be used for information transmission when one is using tone reservation
for PAPR reduction. Our results show that for the two most common wireless
systems, OFDM and DS-CDMA, a strict amplitude constraint requires that the
proportion of signals used to carry information must decrease as the total number
of signals used increases when one is using tone reservation.

One could naively ask whether this is the case for all orthonormal systems.
However, we gave examples for both the Fourier and the Walsh cases of subse-
quences such that the corresponding subspaces have norm equivalence, and thus
the PAPR reduction problem is solvable for the infinite subsequence. By simply
rearranging the original basis by alternately taking one function from the special
subsequence and one from its complement, one has solvability on a subset with
density 1/2. We have seen, though, that when one restricts to finite sets, one no
longer has solvability in this setting. Thus, the behavior depends on the proper-
ties of the finite set. This can be seen for Walsh functions in the matrix setting as
well. Suppose that one alternately selected a Rademacher function and a Walsh
function that is not a Rademacher function and represented them as columns in
a matrix. The number of rows would then grow exponentially with respect to



Boche and Farrell: Peak-to-Average Power Ratio Reduction Problem for Orthogonal Transmission 295

the number of columns. Thus, the norm equivalence would not occur on spaces
of the same dimension or even proportional dimension.

In the Walsh case, we have seen that the three orderings for the Walsh system
all yield the same result. This is because the necessary properties, namely that
products only permute the functions within the appropriate dyadic block, are
common to all the orderings. We state the informal conjecture that as far as
the topics addressed here are concerned, any basis with a useful structure (and
uniformly bounded) will behave similarly to the Fourier and Walsh bases.
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