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Abstract. In this article we give a comprehensive overview of features devised for web
spam detection and investigate how much various classes, some requiring very high
computational effort, add to the classification accuracy.

� We collect and handle a large number of features based on recent advances in web
spam filtering, including temporal ones; in particular, we analyze the strength and
sensitivity of linkage change.

� We propose new, temporal link-similarity-based features and show how to compute
them efficiently on large graphs.

� We show that machine learning techniques, including ensemble selection, Logit-
Boost, and random forest significantly improve accuracy.

� We conclude that, with appropriate learning techniques, a simple and computa-
tionally inexpensive feature subset outperforms all previous results published so
far on our dataset and can be further improved only slightly by computationally
expensive features.

� We test our method on three major publicly available datasets: the Web Spam
Challenge 2008 dataset WEBSPAM-UK2007, the ECML/PKDD Discovery Chal-
lenge dataset DC2010, and the Waterloo Spam Rankings for ClueWeb09.

Color versions of one or more of the figures in the article can be found online at
www.tandfonline.com/uinm.
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Our classifier ensemble sets the strongest classification benchmark compared to partic-
ipants of the Web Spam and ECML/PKDD Discovery Challenges as well as the TREC
Web track.

To foster research in the area, we make several feature sets and source codes public,1

including the temporal features of eight .uk crawl snapshots that include WEBSPAM-
UK2007 as well as the Web Spam Challenge features for the labeled part of ClueWeb09.

1. Introduction

Web classification finds several uses, both for content filtering and for build-
ing focused corpora from a large-scale web crawl. As one notable use, Internet
archives actively participate in large-scale experiments [Benczúr et al. 09], some
of them building analytics services over their collections [Barton 12]. Most of
the existing results on web classification originate from the area of web spam
filtering that have turned out to generalize a wide class of tasks including genre
and Open Directory category, as well as quality classification. Closely related
areas include filtering and tagging in social networks [Hotho et al. 08].

Web spam filtering, the area of devising methods to identify useless web con-
tent with the sole purpose of manipulating search engine results, has drawn
much attention in the past years [Singhal 04, Henzinger et al. 02, Gyöngyi and
Garcia-Molina 05a]. The first mention of web spam, termed spamdexing as a
combination of words spam and (search engine) indexing, appeared probably in
a 1996 news article [Convey 96] as part of the early web era discussions on the
spreading porn content [Chekuri et al. 97]. In the area of the so-called Adversarial
Information Retrieval workshop series, run since 2005 [Fetterly and Gyöngyi 09],
evaluation campaigns including the Web Spam Challenges [Castillo et al. 08],
the ECML/PKDD Discovery Challenge 2010 [Hotho et al. 08], and the Spam
task of TREC 2010 Web Track [Cormack et al. 11] were organized. A recent
comprehensive survey on web spam filtering research is found in [Castillo and
Davison 11].

In this article we present, to our best knowledge, the most comprehensive ex-
perimentation based on content and link range as well as temporal features, both
new and recently published. Our spam filtering baseline classification procedures
are collected by analyzing the results [Cormack 07, Abernethy et al. 08, Geng
et al. 08] of the Web Spam Challenges and the ECML/PKDD Discovery Chal-
lenge 2010 [Geng et al. 10, Sokolov et al. 10, Nikulin 10]. Our comparison is based

1https://datamining.sztaki.hu/en/download/web-spam-resources
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on area under the curve (AUC) values [Fogarty et al. 05] that we believe to be
more stable because they do not depend on the split point; indeed, although Web
Spam Challenge 2007 used F-measure and AUC, Web Spam Challenge 2008 used
AUC only as an evaluation measure.

Web spam appears in sophisticated forms that manipulate content as well as
linkage [Gyöngyi and Garcia-Molina 05b] with examples such as

� Copied content, “honey pots” that draw attention but link to unrelated
spam targets;

� Garbage content, stuffed with popular or monetizable query terms and
phrases such as university degrees, online casinos, bad credit status or adult
content;

� Link farms, a large number of strongly interlinked pages across several do-
mains.

The web spammer toolkit consists of a clearly identifiable set of manipulation
techniques that has not changed much recently. The Web Spam Taxonomy of
[Gyöngyi and Garcia-Molina 05b] distinguishes content (term) and link spam-
ming along with techniques of hiding, cloaking, and removing traces by, e.g.,
obfuscated redirection. Most of the features designed fight either link or content
spamming.

We realize that recent results have ignored the importance of the machine
learning techniques and concentrated only on the definition of new features.
Also, the only earlier attempt to unify a large set of features [Castillo et al.
06] is already four years old, and even there, little comparison is given on the
relative power of the feature sets. For classification techniques, a wide selection
including decision trees, random forest, support vector machine (SVM), class-
feature-centroid, boosting, bagging, and oversampling, in addition to feature
selection (Fisher, Wilcoxon, Information Gain) were used [Geng et al. 10, Sokolov
et al. 10, Nikulin 10] but never compared and combined. In this study we address
the following questions.

� Do we get the maximum value out of the features we have? Are we suffi-
ciently sophisticated at applying machine learning?

� Is it worth calculating computationally expensive features, in particular
those related to page-level linkage?

� What is an optimal feature set for a fast spam filter that can quickly react
at crawl time after fetching a small sample of a website?
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We compare our result with the very strong baselines of the Web Spam Chal-
lenge 2008 and ECML/PKDD 2010 Discovery Challenge datasets. Our main
results are as follows.

� We apply state-of-the-art classification techniques by the lessons learned
from the KDD Cup 2009 [Niculescu-Mizil et al. 09]. Key in our performance
is ensemble classification applied over different feature subsets as well as
over different classifiers over the same features. We also apply classifiers yet
unexplored against web spam, including random forest [Breiman 01] and
LogitBoost [Friedman et al. 00].

� We compile a small yet very efficient feature set that can be computed by
sample pages from the site while completely ignoring linkage information.
By this feature set, a filter may quickly react to a recently discovered site
and intercept in time before the crawler would start to follow a large number
of pages from a link farm. This feature set itself reaches AUC 0.893 over
WEBSPAM-UK2007.

� Last, but not least, we gain strong improvements over the Web Spam Chal-
lenge best performance [Castillo et al. 08]. Our best result in terms of AUC
reaches 0.9 and improves on the best Discovery Challenge 2010 results.

Several recent studies propose temporal features [Shen et al. 06, Lin et al. 07,
Dai et al. 09, Chung et al. 09] to improve classification accuracy. We extend link-
based similarity algorithms by proposing metrics to capture the linkage change of
webpages over time. We describe a method to calculate these metrics efficiently
on the web graph and then measure their performance when used as features
in web spam classification. We propose an extension of two link-based similarity
measures: XJaccard and PSimRank [Fogaras and Rácz 05].

We investigate the combination of temporal and nontemporal, both link- and
content-based features using ensemble selection. We evaluate the performance
of ensembles built on the latter feature sets and compare our results to that of
state-of-the-art techniques reported on our dataset. Our conclusion is that tem-
poral and link-based features in general do not significantly increase Web spam
filtering accuracy. However, information about linkage change might improve the
performance of a language independent classifier: the best results for the French
and German classification tasks of the ECML/PKDD Discovery Challenge [Geng
et al. 10] were achieved by using host level link features only, outperforming those
who used all features [Sokolov et al. 10].

In this work we address not just the quality but also the computational effi-
ciency. Earlier lightweight classifiers include [Webb et al. 08] describing a pro-
cedure based solely on the HTTP session information. Unfortunately, they mea-
sure only precision, recall, and F-measure that are difficult to compare with later
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results on web spam that use AUC. In fact, the F and similar measures greatly
depend on the classification threshold and, hence, make comparison less stable;
for this reason they are not used, starting with the Web Spam Challenge 2008.
Furthermore, in [Webb et al. 08] the IP address is a key feature that is trivially
incorporated in the DC2010 dataset by placing all hosts from the same IP address
into the same training or testing set. The intuition is that if an IP address con-
tains spam hosts, all hosts from that IP address are likely to be spam and should
be immediately manually checked and excluded from further consideration.

The rest of this article is organized as follows. In Section 2 we describe the
datasets used in this paper. We give an overview of temporal features for spam
detection and propose new temporal link-similarity-based ones in Section 3. In
Section 4 we describe our classification framework. The results of the experiments
to classify WEBSPAM-UK2007, ClueWeb09, and DC2010 can be found in Sec-
tion 5. The computational resource needs of various feature sets are summarized
in Section 6.

2. Datasets

In this paper we use three datasets, WEBSPAM-UK2007 of the Web Spam Chal-
lenge 2008 [Castillo et al. 08], the Waterloo Spam Rankings for ClueWeb09, and
DC2010 created for the ECML/PKDD Discovery Challenge 2010 on Web Qual-
ity. We give only a brief summary of the first dataset—described well in [Castillo
et al. 08, Castillo et al. 07] and the second in [Erdélyi et al. 11]—however, we
describe the third in more detail in Section 2.3. Also, we compare the amount of
spam in the datasets.

2.1. Web Spam Challenge 2008: WEBSPAM-UK2007

The Web Spam Challenge was first organized in 2007 over the WEBSPAM-
UK2006 dataset. The last Challenge over the WEBSPAM-UK2007 set was held
in conjunction with AIRWeb 2008 [Castillo et al. 08]. The Web Spam Challenge
2008 best result [Geng et al. 08] achieved an AUC of 0.85 by also using ensemble
undersampling [Chawla et al. 04]. They trained a bagged classifier on the stan-
dard content-based and link-based features published by the organizers of the
Web Spam Challenge 2008 and on custom host-graph-based features, using the
ERUS strategy for class-inbalance learning. For earlier challenges, best perfor-
mances were achieved by a semisupervised version of the support vector machine
(SVM) [Abernethy et al. 08] and text compression [Cormack 07]. Best results
either used bag of words vectors or the so-called “public” feature sets of [Castillo
et al. 06].
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Figure 1. The number of total and labeled hosts in the 13 UK snapshots. We
indicate the number of positive and negative labels separate for the WEBSPAM-
UK2006 and WEBSPAM-UK2007 label sets.

Label Set Instances %Positive

Training 4000 5.95%
Testing 2053 4.68%

Table 1. Summary of label sets for Web Spam Challenge 2008.
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We extended the WEBSPAM-UK2007 dataset with 13 .uk snapshots provided
by the Laboratory for Web Algorithmics of the Università degli studi di Milano.
We use the training and testing labels of the Web Spam Challenge 2008, as
summarized in Table 1. In order to prepare a temporal collection, we extracted
a maximum of 400 pages per site from the original crawls. The last 12 of the
.uk snapshots were analyzed by [Bordino et al. 08] who observed a relative low
URL but high host overlap.2 The first snapshot (2006-05) that is identical to
WEBSPAM-UK2006 was chosen to be left out from their experiment because it
was provided by a different crawl strategy. We observed that, in the last eight
snapshots, the number of hosts have stabilized in the sample and these snapshots
have roughly the same number of labeled hosts as seen in Figure 1. From now
on we restrict attention to the aforementioned subset of the snapshots and the
WEBSPAM-UK2007 labels only.

2.2. The Waterloo Spam Rankings for ClueWeb09

The English part of ClueWeb09 consists of approximately 20 M domains and
500 M pages. For web spam labels we used the Waterloo Spam Rankings [Cor-
mack et al. 11]. Although the Waterloo Spam Rankings contain negative training
instances as well, we extended the negative labels with the set of the Open Di-
rectory Project (ODP) hosts. We used a 50-50% split for training and testing.

We labeled hosts in both the .pt crawl and ClueWeb09 by top-level ODP cate-
gories using links extracted from topic subtrees in the directory. Out of all labeled
hosts, 642, 643 received a unique label. Because certain sites (e.g., bbc.co.uk)
may belong to even all 14 top-level English categories, we discarded the la-
bels of 18, 734 hosts with multiple labels to simplify the multilabel task. As
[Bordino et al. 10] indicate, multitopical hosts are often associated with poor
quality sites and spam as another reason why their labels may mislead the clas-
sification process. The resulting distribution of labels is shown in Table 2.

2.3. Discovery Challenge 2010: DC2010

The Discovery Challenge was organized over DC2010, a new dataset that we
describe in more detail in the next section. DC2010 is a large collection of an-
notated web hosts labeled by the Hungarian Academy of Sciences (English doc-
uments), Internet Memory Foundation (French), and L3S Hannover (German).
The base data is a set of 23 M pages in 190 K hosts in the .eu domain crawled by
the Internet Memory Foundation in early 2010. The labels extend the scope of

2 The dataset can be downloaded from: http://law.di.unimi.it/datasets.php
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Category No. of Hosts % of Labeled Hosts

spam 439 0.07%

Arts 97355 15.1%
Business 193678 30.1%
Computers 66159 10.3%
Recreation 65594 10.2%
Science 43317 6.7%
Society 122084 19 %
Sports 54456 8.5%

Table 2. Number of positive ClueWeb09 host labels for spam and the ODP categories.

previous datasets on web spam in that, in addition to sites labeled spam, we in-
cluded manual classification for genre into five categories: Editorial, Commercial,
Educational, Discussion, and Personal, as well as trust, factuality, and bias as
three aspects of quality. The spam label is exclusive because no other assessment
was made for spam. However, other labels are nonexclusive and, hence, define
nine binary classification problems. We consider no multiclass tasks in this work.

DC2010

UK2006 UK2007 ClueWeb09 en de fr all

Hosts 10 660 114 529 500,000 61 703 29 758 7 888 190 000
Spam 19.8% 5.3% unknown 8.5% of valid labels; 5% of

all in large domains.

Table 3. Fraction of Spam in WEBSPAM-UK2006, UK2007, ClueWeb09 and
DC2010. Note that three languages—English, German, and French—were se-
lected for labeling DC2010, although Polish and Dutch language hosts constitute
a larger fraction than the French. Because to our best knowledge, no systematic
random sample was labeled for ClueWeb09, the number 439 of labeled spam hosts
is not representative for the collection.
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Count IP address Comment

3544 80.67.22.146 spam farm *-palace.eu

3198 78.159.114.140 spam farm *auts.eu

1374 62.58.108.214 blogactiv.eu

1109 91.204.162.15 spam farm x-mp3.eu

1070 91.213.160.26 spam farm a-COUNTRY.eu

936 81.89.48.82 autobazar.eu

430 78.46.101.76 spam farm 77k.eu and 20+ domains
402 89.185.253.73 spam farm mp3-stazeni-zdarma.eu

Table 4. Selection of IP addresses with many subdomains in the DC2010 dataset.

Assessor instructions are, for example, summarized in [Siklósi et al. 12], a study
concentrating on quality labels.

In Table 3, we summarize the amount of spam in the DC2010 dataset in
comparison with the Web Spam Challenge datasets. This amount is well-defined
for the latter datasets by the way they were prepared for the Web Spam Challenge
participants. However, for DC2010, this figure may be defined in several ways.
First of all, when creating the DC2010 labels, eventually we considered domains
with or without a www. prefix the same, such as www.domain.eu vs. domain.eu.
However, in our initial sampling procedure we considered them as two different
hosts and merged them after verifying that the labels of the two versions were
identical. Also, several domains consist of a single redirection page to another
domain, and we counted these domains, too. Finally, a large fraction of spam is
easy to spot and can be manually removed. As an example of many hosts on the
same IP, we include a labeled sample from DC2010, which itself contains over
10,000 spam domains in Table 4. These hosts were identified by manually looking
at the IP addresses that serve the largest number of domain names. Thus, our
sample is biased, and obtaining an estimate of the spam fraction is nontrivial,
as indicated in Table 3.

The distribution of labels for the nine categories with more than 1% positive
samples (spam, news, commercial, educational, discussion, personal, neutral, bi-
ased, trusted) is given in Table 5. For neutrality and trust, the strong negative
categories have low frequency and, hence, we fused them with the intermediate
negative (maybe) category for the training and testing labels.
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Label Group Yes Maybe No

Spam Spam 423 4 982
News/Editorial Genre 191 4 791
Commercial 2 064 2 918
Educational 1 791 3 191
Discussion 259 4 724
Personal-Leisure 1 118 3 864

Nonneutrality Quality 19 216 3 778

Bias 62 3 880
Distrustiness 26 201 3 786

Table 5. Distribution of assessor labels in the DC2010 dataset.

The Discovery Challenge 2010 best result [Nikulin 10] achieved an AUC of
0.83 for spam classification whereas the overall winner [Geng et al. 10] was able
to classify a number of quality components at an average AUC of 0.80. As for
the technologies, bag of words representation variants proved to be very strong
for the English collection, although only language independent features were
used for German and French. The applicability of dictionaries and cross-lingual
technologies remains open.

New to the construction of the DC2010 training and test set is the handling
of hosts from the same domain and IP address. Because no IP address and
domain was allowed to be split between training and testing, we might have
to reconsider the applicability of propagation [Gyöngyi et al. 04, Wu et al. 06]
and graph stacking [Kou and Cohen 07]. The Web Spam Challenge datasets
were labeled by uniform random sampling, and graph stacking appeared to be
efficient in several results [Castillo et al. 07] including our prior work [Csalogány
et al. 07]. The applicability of graph stacking remains, however, unclear for the
DC2010 dataset. Certain teams used some of these methods but reported no
improvement [Sokolov et al. 10].

3. Temporal Features for Spam Detection

Spammers often create bursts in linkage and content: they might add thousands
or even millions of machine-generated links to pages that they want to promote
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[Shen et al. 06] that they again very quickly regenerate for another target or
remove if blacklisted by search engines. Therefore, changes in both content and
linkage can characterize spam pages.

Recently, the evolution of the web has attracted interest in defining features,
signals for ranking [Dong et al. 10], and spam filtering [Shen et al. 06, Lin et al.
07, Dai et al. 09, Chung et al. 09, Erdélyi et al. 09]. The earliest results investigate
the changes of web content with the primary interest of keeping a search engine
index up-to-date [Cho and Garcia-Molina 00a,b]. The decay of webpages and
links and its consequences on ranking are discussed in [Bar-Yossef et al. 04, Eiron
et al. 04]. One main goal of [Boldi et al. 08], who collected the .uk crawl snapshots
also used in our experiments, was the efficient handling of time-aware graphs.
Closest to our temporal features is the investigation of host overlap, deletion and
content dynamics in the same dataset by [Bordino et al. 08].

Perhaps the first result on the applicability of temporal features for web spam
filtering is due to [Shen et al. 06] who compare pairs of crawl snapshots and
define features based on the link growth and death rate. However, by extending
their ideas to consider multistep neighborhoods, we are able to define a very
strong feature set that can be computed by the Monte Carlo estimation of [Fog-
aras and Rácz 05]. Another result defines features based on the change of the
content [Dai et al. 09] by those who obtain page history from the Wayback
Machine.

For calculating the temporal link-based features, we use the host-level graph.
As observed in [Bordino et al. 08], pages are much more unstable over time
compared to hosts. Note that page-level fluctuations could simply result from
the sequence of the pages the crawler visited and not necessarily reflect real
changes. The inherent noise of the crawling procedure and problems with URL
canonization [Bar-Yossef et al. 09] rule out the applicability of features based on
the change of page-level linkage.

3.1. Linkage Change

In this section we describe link-based temporal features that capture the extent
and nature of linkage change. These features can be extracted from either the
page or the host-level graph where the latter has a directed link from host a to
host b if there is a link from a page of a to a page of b.

The starting point of our new features is the observation of [Shen et al. 06]
that the in-link growth and death rate and change of clustering coefficients char-
acterize the evolution patterns of spam pages. We extend these features for the
multistep neighborhood in the same way as PageRank extends the in-degree. The
�-step neighborhood of page v is the set of pages reachable from v over a path
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of length at most �. The �-step neighborhood of a host can be defined similarly
over the host graph.

We argue that the changes in the multistep neighborhood of a page should
be more indicative of the spam or honest nature of the page than its single-step
neighborhood because spam pages are mostly referred to by spam pages [Castillo
et al. 07], and spam pages can be characterized by a larger change of linkage when
compared to honest pages [Shen et al. 06].

In the following, we review the features related to linkage growth and death
from [Shen et al. 06] in Section 3.1.1, then we introduce new features based on
the similarity of the multistep neighborhood of a page or host. We show how the
XJaccard and PSimRank similarity measures can be used for capturing linkage
change in Section 3.1.3 and Section 3.1.4, respectively.

3.1.1. Change Rate of In-links and Out-links. We compute the following features intro-
duced by Shen et al. [Shen et al. 06] on the host level for a node a for graph
instances from time t0 and t1 . We let G(t) denote the graph instance at time
t and I(t)(a), Γ(t)(a) denote the set of in and out-links of node a at time t,
respectively.

� In-link death (IDR) and growth rate (IGR):

IDR(a) =
|I(t0 )(a)| − |I(t0 )(a) ∩ I(t1 )(a)|

|I(t0 )(a)| .

IGR(a) =
|I(t1 )(a)| − |I(t0 )(a) ∩ I(t1 )(a)|

|I(t0 )(a)| .

� Out-link death and growth rates (ODR, OGR): the above features calcu-
lated for out-links;

� Mean and variance of IDR, IGR, ODR, and OGR across in-neighbors of a
host (IDRMean, IDRVar, etc.);

� Change rate of the clustering coefficient (CRCC), i.e., the fraction of linked
hosts within those pointed by pairs of edges from the same host:

CC(a, t) =
|{(b, c) ∈ G(t)|b, c ∈ Γ(t)(a)|

|Γ(t)(a)| .

CRCC(a) =
CC(a, t1) − CC(a, t0)

CC(a, t0)
.
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� Derivative features such as the ratio and product of the in- and out-link
rates, means, and variances. We list the in-link derivatives; out-link deriva-
tives are defined similarly:

IGR · IDR, IGR/IDR, IGRMean/IGR, IGRVar/IGR,
IDRMean/IDR, IDRVar/IDR, IGRMean · IDRMean,
IGRMean/IDRMean, IGRVar · IDRVar, IGRVar/IDRVar.

3.1.2. Self-Similarity Along Time. In the next sections we introduce new linkage change
features based on multistep graph similarity measures that in some sense gen-
eralize the single-step neighborhood change features of the previous section. We
characterize the change of the multistep neighborhood of a node by defining the
similarity of a single node across snapshots instead of two nodes within a single
graph instance. The basic idea is that, for each node, we measure its similarity
to itself in two identically labeled graphs representing two consecutive points of
time. This enables us to measure the linkage change occurring in the observed
time interval using ordinary graph similarity metrics.

First we describe our new contribution, the extension of two graph similarity
measures, XJaccard and PSimRank [Fogaras and Rácz 05], to capture temporal
change; moreover, we argue why SimRank [Jeh and Widom 02] is inappropriate
for constructing temporal features.

SimRank of a pair of nodes u and v is defined recursively as the average
similarity of the neighbors of u and v:

Sim�+1(u, v) = 0, if I(u) or I(v) is empty;
Sim�+1(u, v) = 1, if u = v; (3.1)

Sim�+1(u, v) =
c

|I(u)||I(v)|
∑

v ′∈I (v )
u ′∈I (u)

Sim�(u′, v′),

where I(x) denotes the set of vertices linking to x, and c ∈ (0, 1) is a decay factor.
In order to apply SimRank for similarity of a node v between two snapshots t0
and t1 , we apply (3.1) so that v′ and u′ are taken from different snapshots.

Next we describe a known deficiency of SimRank in its original definition,
which rules out its applicability for temporal analysis. First, we give the example
for the single-graph SimRank. Consider a bipartite graph with k nodes pointing
all to another two u and v. In this graph there are no directed paths of length
more than one and, hence, the Sim values can be computed in a single iteration.
Counterintuitively, we get Sim(u, v) = c/k, i.e., the larger the cocitation of u

and v, the smaller their SimRank value. The reason is that the more the number
of in-neighbors, the more likely it is that a pair of random neighbors will be
different.
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Although the example of the misbehavior for SimRank is somewhat artificial
in the single-snapshot case, next we show that this phenomenon almost always
happens if we consider the similarity of a single node v across two snapshots.
If there is no change at all in the neighborhood of node v between the two
snapshots, we expect the Sim value to be maximal. However, the situation is
identical to the bipartite graph case, and Sim will be inversely proportional to
the number of out-links.

3.1.3. Extended Jaccard Similarity Along Time. Our first definition of similarity is based
on the extension of the Jaccard coefficient; in a similar way XJaccard is defined
in [Fogaras and Rácz 05]. The Jaccard similarity of a page or host v across two
snapshots t0 and t1 is defined by the overlap of its neighborhood in the two
snapshots, Γ(t0 )(v) and Γ(t1 )(v) as

Jac(t0 ,t1 )(v) =
|Γ(t0 )(v) ∩ Γ(t1 )(v)|
|Γ(t0 )(v) ∪ Γ(t1 )(v)| .

The extended Jaccard coefficient, XJaccard for length � of a page or host is
defined via the notion of the neighborhood Γ(t)

k (v) at distance exactly k as

XJac(t0 ,t1 )

�
(v) =

�∑

k=1

|Γ(t0 )
k (v) ∩ Γ(t1 )

k (v)|
|Γ(t0 )

k (v) ∪ Γ(t1 )
k (v)|

· ck (1 − c),

where c is a decay factor.
The XJac values can be approximated by the min-hash fingerprinting technique

for Jaccard coefficients [Broder 97], as described in Algorithm 3 of [Fogaras and
Rácz 05]. The fingerprint generation algorithm has to be repeated for each graph
snapshot, with the same set of independent random permutations.

We generate temporal features based on the XJac values for four length values
� = 1 . . . 4. We also repeat the computation on the transposed graph, i.e., replac-
ing out-links Γ(t)(v) by in-links I(t)(v). As suggested in [Fogaras and Rácz 05],
we set the decay factor c = 0.1 as this is the value where, in their experiments,
XJaccard yields best average quality for similarity prediction.

Similarly to [Shen et al. 06], we also calculate the mean and variance
XJac(t0 ,t1 )

�(w) of the neighbors w for each node v. The following derived fea-
tures are also calculated:

� similarity at path length � = 2, 3, 4 divided by similarity at path length
� − 1, and the logarithm of these;

� logarithm of the minimum, maximum, and average of the similarity at path
length � = 2, 3, 4 divided by the similarity at path length � − 1.
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3.1.4. PSimRank Along Time. Next we define similarity over time based on PSimRank,
a SimRank variant defined in [Fogaras and Rácz 05] that can be applied simi-
larly to XJaccard in the previous section. As we saw in Section 3.1.2, SimRank
is inappropriate for measuring linkage change in time. In the terminology of
the previous subsection, the reason is that path fingerprints will be unlikely to
meet in a large neighborhood and SimRank values will be low even if there is
completely no change in time.

We solve the deficiency of SimRank by allowing the random walks to meet
with higher probability when they are close to each other: a pair of random
walks at vertices u′, v′ will advance to the same vertex (i.e., meet in one step)
with probability of the Jaccard coefficient |I (u ′)∩I (v ′)|

|I (u ′)∪I (v ′)| of their in-neighborhood
I(u′) and I(v′).

The random walk procedure corresponding to PSimRank along with a finger-
print generation algorithm is defined in [Fogaras and Rácz 05].

For the temporal version, we choose independent random permutations σ� on
the hosts for each step �. In step � if the random walk from vertex u is at u′, it
will step to the in-neighbor with smallest index given by the permutation σ� in
each graph snapshot.

Temporal features are derived from the PSimRank similarity measure very
much the same way as for XJaccard, for four length values � = 1 . . . 4. We also
repeat the computation on the transposed graph, i.e., replacing out-links Γ(t)(v)
by in-links I(t)(v). As suggested in [Fogaras and Rácz 05], we set the decay factor
c = 0.15 as this is the value where, in their experiments, PSimRank yields best
average quality for similarity prediction. Additionally, we calculate the mean and
variance PSimRank(w) of the neighbors w for each node v and derived features
as for XJaccard.

3.2. Content and Its Change

The content of webpages can be deployed in content classification either via
statistical features such as entropy [Ntoulas 06] or via term weight vectors [Zhou
et al. 08, Dai et al. 09]. One of the more complex features that we do not consider
in this work is language modeling [Attenberg and Suel 08].

In this section we focus on capturing term-level changes over time. For each
target site and crawl snapshot, we collect all the available HTML pages and
represent the site as the bag-of-words union of all of their content. We tokenize
content using the ICU library,3 remove stop words,4 and stem using Porter’s
method.

3 http://icu-project.org/
4 http://www.lextek.com/manuals/onix/stopwords1.html
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We treat the resulting term list as the virtual document for a given site at a
point of time. As our vocabulary, we use the most frequent 10,000 terms found
in at least 10% and at most 50% of the virtual documents.

To measure the importance of each term i in a virtual document d at time
snapshot T , we use the BM25 weighting [Robertson and Walker 94]:

t
(T )
i,d = IDF(T )

i · (k1 + 1)tf(T )
i,d

K + tf(T )
i,d

,

where tf(T )
i,d is the number of occurrences of term i in document d and IDF(T )

i is
the inverse document frequency (Robertson-Spärck Jones weight) for the term
at time T . The length of normalized constant K is specified as

k1((1 − b) + b × dl(T )/avdl(T )),

such that dl(T ) and avdl(T ) denote the virtual document length and the average
length over all virtual documents at time T , respectively. Finally

IDF(T ) = log
N − n(T ) + 0.5

n(T ) + 0.5
,

where N denotes the total number of virtual documents and n(T ) is the number
of virtual documents containing term i. Note that we keep N independent of T

and hence if document d does not exist at T , we consider all tf(T )
i,d = 0.

By using the term vectors as above, we calculate the temporal content features
described in [Dai et al. 09] in the following five groups.

� Ave: Average BM25 score of term i over the Tmax snapshots:

Avei,d =
1

Tmax
·

Tm a x∑

T =1

t
(T )
i,d .

� AveDiff: Mean difference between temporally successive term weight
scores:

AveDiffi,d =
1

Tmax − 1
·

Tm a x −1∑

T =1

|t(T +1)
i,d − t

(T )
i,d |.

� Dev: Variance of term weight vectors at all time points:

Devi,d =
1

Tmax − 1
·

Tm a x∑

T =1

(t(T )
i,d − Avei,d)2 .
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� DevDiff: Variance of term weight vector differences of temporally succes-
sive virtual documents:

DevDiffi,d =
1

Tmax − 2
·

Tm a x −1∑

T =1

(|t(T +1)
i,d − t

(T )
i,d | − AveDiffi,d)2 .

� Decay: Weighted sum of temporally successive term weight vectors with
exponentially decaying weight. The base of the exponential function, the
decay rate is denoted by λ. Decay is defined as follows:

Decayi,d =
Tm a x∑

T =1

λeλ(Tm a x −T )t
(T )
i,d .

4. Classification Framework

For the purposes of our experiments, we computed all the public Web Spam
Challenge content and link features of [Castillo et al. 06]. We built a classifier
ensemble by splitting features into related sets, and for each we use a collection of
classifiers that fit the data type and scale. These classifiers were then combined
by ensemble selection. We used the classifier implementations of the machine
learning toolkit Weka [Witten and Frank 05].

Ensemble selection is an overproduce-and-choose method allowing the use of
large collections of diverse classifiers [Caruana et al. 04]. Its advantages over pre-
viously published methods [Caruana et al. 06] include optimization to any perfor-
mance metric and refinements to prevent overfitting, the latter being unarguably
important when more classifiers are available for selection. The motivation for
using ensemble selection is that recently this particular ensemble method gained
more attention thanks to the winners of KDD Cup 2009 [Niculescu-Mizil et al.
09]. In our experiments [Erdélyi et al. 11] ensemble selection used for web spam
detection performed significantly better than other classifier combination meth-
ods in the literature, such as log-odds based averaging [Lynam et al. 06] and
bagging.

In the context of combining classifiers for web classification, to our best knowl-
edge, ensemble selection has not been applied yet. Previously, only simple meth-
ods that combine the predictions of SVM or decision tree classifiers through
logistic regression or random forest have been used [Cormack 07]. We believe
that the ability to combine a large number of classifiers while preventing overfit-
ting makes ensemble selection an ideal candidate for web classification, because
it allows us to use a large number of features and learn different aspects of the
training data at the same time. Instead of tuning various parameters of different
classifiers, we can concentrate on finding powerful features and selecting the main
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classifier models that we believe to be able to capture the differences between
the classes to be distinguished.

We used the ensemble selection implementation of Weka [Witten and Frank
05] for performing the experiments. Weka’s implementation supports the proven
strategies to avoid overfitting such as model bagging, sort initialization, and
selection with replacement. We allow Weka to use all available models in the
library for greedy sort initialization, and use 5-fold embedded cross-validation
during ensemble training and building. We set AUC as the target metric to
optimize for and run 100 iterations of the hill-climbing algorithm.

We mention that we have to be careful with treating missing feature values.
Since the temporal features are based on at least two snapshots, for a site that
appears only in the last one, all temporal features have missing value. For classi-
fiers that are unable to treat missing values, we define default values depending
on the type of the feature.

4.1. Learning Methods

We use the following models in our ensemble: bagged and boosted decision trees,
logistic regression, naive Bayes, and variants of random forests. For most classes
of features, we use all classifiers and let selection choose the best ones. The
exception is static and temporal term vector-based features for which, because
of the very large number of features, we may use only random forest and SVM.
We train our models as follows.

Bagged LogitBoost: we do 10 iterations of bagging and vary the number of
iterations from 2 to 64 in multiples of two for LogitBoost.

Decision Trees: we generate J48 decision trees by varying the splitting criterion
and pruning options and use either Laplacian smoothing or no smoothing at
all.

Bagged Cost-Sensitive Decision Trees: we generate J48 decision trees with
default parameters but vary the cost sensitivity for false positives in steps of
10 from 10 to 300. We do the same number of iterations of bagging as for
LogitBoost models.

Logistic Regression: we use a regularized model varying the ridge parameter
between 10−8 to 104 by factors of 10. We normalize features to have mean 0
and standard deviation 1.

Random Forests: we use FastRandomForest5 instead of the native Weka imple-
mentation for faster computation. The forests have 250 trees and, as suggested

5 http://code.google.com/p/fast-random-forest/.
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in [Breiman 01], the number of features considered at each split is s/2, s, 2s,
4s, and 8s, where s is the square root of the total number of features available.

Naive Bayes: we allow Weka to model continuous features either as a single
normal or with kernel estimation, or we let it discretize them with supervised
discretization.

5. Results and Discussion

In this section we describe the various ensembles we built and measure their
performance.6 We compare feature sets by using the same learning methods de-
scribed in Section 4 although varying the subset of features available for each of
the classifier instances when training and combining these classifiers using en-
semble selection. We also concentrate on the value of temporal information for
web spam detection. As our goal is to explore the computational cost vs. clas-
sification performance trade-off, we will describe the resource needs for various
features in detail in Section 6.

For training and testing, we use the official Web Spam Challenge 2008 training
and test sets [Castillo et al. 06]. As can be seen in Table 1, these show consid-
erable class imbalance, which makes the classification problem more difficults.
For DC2010, we also use the official training set as described in Table 5. For
ClueWeb09 we used a 50–50% random split.

To make it easy to compare our results to previous results, we cite the Web
Spam Challenge 2008 and Discovery Challenge 2010 winners performances in the
summary tables next. For ClueWeb09, the only previous evaluation is in terms
of TREC retrieval performance [Cormack et al. 11], which we cannot directly
compare here.

5.1. Content-Only Ensemble

We build three different ensembles over the content-only features in order to
assess performance by completely eliminating linkage information. The feature
sets available for these ensembles are the following:

� (A) Public content [Ntoulas et al. 06, Castillo et al. 07] features without any
link-based information. Features for the page with maximum PageRank in
the host are not used to save the PageRank computation. Corpus precision,

6 The exact classifier model specification files used for Weka and the data files used for the
experiments are available upon request from the authors.
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Number of Clue
Feature Set Features UK2007 DC2010 Web09

Content (A) 74 0.859 0.757 0.829
Content (Aa) 24 0.841 0.726 0.635
Content (B) 96 0.879 0.799 0.827
BM25 + (B) 10096 0.893 0.891 0.870

Challenge best - 0.852 0.830 -

Table 6. AUC value of spam ensembles built from content-based features.

the fraction of words in a page that is corpus-wise frequent, and corpus
recall, the fraction of corpus-wise frequent terms in the page are not used
either because they require global information from the corpus.

� (Aa) The tiniest feature set of 24 features from (A): query precision and
query recall defined similar to corpus precision and recall but based on
popular terms from a proprietary query log7 instead of the entire corpus.
A very strong feature set based on the intuition that spammers use terms
that make up popular queries.

� (B) The full public content feature set [Castillo et al. 07], including features
for the maximum PageRank page of the host.

� Feature set (B) plus a bag-of-words representation derived from the BM25
[Robertson and Walker 94] term weighting scheme.

Table 6 presents the performance comparison of ensembles built using either
of the above feature sets. The DC2010 and ClueWeb09 detailed results are in
Table 8 and Table 9, respectively. Performance is given in AUC for all datasets.

Surprisingly, with the small (Aa) feature set of only 24 features a performance
was achieved that was only 1% worse than that of the Web Spam Challenge
2008 winner, who employed more sophisticated methods to get his/her result.
By using all the available content-based features without linkage information, we
get roughly the same performance as the best that have been reported on our
dataset so far. However, this achievement can be attributed rather to the better
machine learning techniques used than the feature set itself since the features

7 A summary is available as part of our data release at https://dms.sztaki.hu/sites/dms.
sztaki.hu/files/download/2013/enpt-queries.txt.gz.
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Number of
Feature Set Features UK2007 DC2010 ClueWeb09

Public link-based [7] 177 0.759 0.587 0.806
All combined 10 273 0.902 0.885 0.876

Table 7. Performance of ensembles built on link-based and all features.

used for this particular measurement were already publicly accessible at the time
of the Web Spam Challenge 2008.

As can be seen in Table 6, relative performance of content-based features over
different corpora varies a lot. In the cases of DC2010 and ClueWeb09, the small
(Aa) feature set achieves much worse results than the largest feature set having
best performance of all datasets. The fact that the content (A, Aa, B) and link
(Table 7) performances are always better for UK2007 might be explained by
the fact that the UK2007 training and testing sets were produced by random
sampling without considering domain boundaries. Hence, in a large domain with
many subdomains, part of the hosts belong to the training and part to the
testing set with very similar distribution. This advantage disappears for the
BM25 features.

5.2. Full Ensemble

Results of the ensemble incorporating all the previous classifiers is seen in Table 7.
The DC2010 detailed results are in Table 8. Overall, we observe that BM25 is a
very strong feature set that could even be used itself for a lightweight classifier.
However, link features add little to quality and the gains apparently diminish for
DC2010, likely due to the fact that the same domain and IP address is not split
between training and testing.

The best Web Spam Challenge 2008 participant [Geng et al. 08] reaches an
AUC of 0.85, whereas for DC2010, the best spam classification AUC of [Nikulin
10] is 0.83. We outperform these results by a large margin.

For DC2010 we also show detailed performance for nine attributes in Table 8,
averaged in three groups: spam, genre, and quality (as in Table 5). Findings
are similar: with BM25 domination, part or all of the content features slightly
increase the performance. Results for the quality attributes and, in particular for
trust, are very low. Classification for these aspects remains a challenging task
for the future.
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genre quality
Feature Set spam average average average

Public link-based [7] 0.655 0.614 0.519 0.587
Content (A) 0.757 0.713 0.540 0.660
Content (Aa) 0.726 0.662 0.558 0.634
Content (B) 0.799 0.735 0.512 0.668
BM25 0.876 0.805 0.584 0.739

Public link-based + (B) 0.812 0.731 0.518 0.669
BM25 + (A) 0.872 0.816 0.580 0.754

BM25 + (B) 0.891 0.810 0.612 0.744
All combined 0.885 0.813 0.553 0.734

Table 8. Performance over the DC2010 labels in terms of AUC.

For ClueWeb09, detailed performance for selected ODP categories can be seen
in Table 9. Identically to DC2010 results, BM25 features provide the best classi-
fication performance. However, combinations with other feature sets yield gains
for only spam classification. For the ODP classification tasks, linkage informa-
tion does not help in general: the content-based feature set has roughly the same
performance with or without page-level linkage information, and combining with
the link-based feature set does not improve performance notably in most labeling
tasks.

5.3. Temporal Link Ensembles

First, we compare the temporal link features proposed in Section 3.1 with those
published earlier [Shen et al. 06]. Then, we build ensembles that combine the
temporal with the public link-based features described by [Becchetti et al. 06].
The results are summarized in Table 10. Note that all experiments in this section
and in Section 5.4 were carried out on the WEBSPAM-UK2007 dataset.

As these measurements show, our proposed graph-similarity-based features
successfully extend the growth- and death-rate-based ones by achieving higher
accuracy, improving AUC by 1.3%. However, by adding temporal to static link-
based features we get only marginally better ensemble performance.
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No. of

Section Feature Set Features AUC

3.1.1 Growth/death rates 29 0.617
3.1.3-4 XJaccard + PSimRank 63 0.625

Public link-based [7] 176 0.765

3.1.1
Public +

205 0.758
growth/death rates

3.1.3-4
Public +

239 0.769
XJaccard + PSimRank

All link-based 268 0.765
WSC 2008 Winner — 0.852

Table 10. Performance of ensembles built on link-based features.

To rank the link-based feature sets by their contribution in the ensemble, we
build classifier models on the three separate feature subsets (public link-based,
growth/death-rate-based and graph-similarity-based features, respectively) and
let ensemble selection combine them. This restricted combination results in a
slightly worse AUC of 0.762. By calculating the total weight contribution, we
get the following ranked list (weight contribution showed in parenthesis): pub-
lic link-based (60.8%), graph-similarity-based (21.5%), growth/death-rate-based
(17.7%). This ranking also supports the findings presented in Table 10 that
graph similarity based temporal link-based features should be combined with
public link-based features if temporal link-based features are used.

To separate the effect of ensemble selection on the performance of temporal
link-based feature sets, we repeat the experiments with bagged cost-sensitive
decision trees only, a model reported to be effective for web spam classification
[Ntoulas et al. 06]. The results for these experiments are shown in Table 11.

As can be seen in Table 11, when using bagged cost-sensitive decision trees,
our proposed temporal link-based similarity features achieve 3.5% better perfor-
mance than the growth/death-rate-based features published earlier.

When comparing results in Table 11 and in Table 10, we can see that ensemble
selection (i) significantly improves accuracy (as expected) and (ii) diminishes the
performance advantage achievable by the proposed temporal link-based features
over the previously published ones.
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No. of

Section Feature Set Features AUC

3.1.1 Growth/death rates 29 0.605
3.1.3 XJaccard 42 0.626
3.1.4 PSimRank 21 0.593

3.1.3-4 XJaccard + PSimRank 63 0.610
Public link-based [7] 176 0.731

3.1.1
Public +

205 0.696
growth/death rates

3.1.3-4
Public +

239 0.710
XJaccard + PSimRank

All link-based 268 0.707
WSC 2008 Winner — 0.852

Table 11. Performance of bagged cost-sensitive decision trees trained on link-
based features.

As evident from Table 11, the proposed PSimRank-based temporal features
perform roughly the same as the growth- and death-rate-based ones whereas the
XJaccard-based temporal features perform slightly better.

Next we perform sensitivity analysis of the temporal link-based features by
using bagged cost-sensitive decision trees. We build 10 different random training
samples for each of the possible fractions 10%, 20%, . . . , 100% of all available
labels. In Figure 2 we can see that the growth/death-rate-based features as well
as the PSimRank-based features are not sensitive to training set size although
the XJaccard-based ones are. That is, even though XJaccard is better in terms
of performance than the other two feature sets considered, it is more sensitive
to the amount of training data used as well.

5.4. Temporal Content Ensembles

We build ensembles based on the temporal content features described in Section
3.2 and their combination themselves, with the static BM25 features, and with
the content-based features of [Ntoulas et al. 06]. The performance comparison of
temporal content-based ensembles is presented in Table 12.
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Figure 2. Sensitivity of temporal link-based features. (a) AUC values averaged
across 10 measurements. (b) standard deviations of AUC for different training
set sizes.

By combining all the content- and link-based features, both temporal and
static ones, we train an ensemble that incorporates all the previous classifiers.
This combination resulted in an AUC of 0.908, meaning no significant improve-
ment can be achieved with link-based features over the content-based ensemble.

6. Computational Resources

For the experiments, we used a 45-node Hadoop cluster of dual core machines
with 4GB RAM each as well as multicore machines with over 40GB RAM. Over
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No. of

Feature Set Features AUC

Static BM25 10,000 0.736
Ave 10,000 0.749
AveDiff 10,000 0.737
Dev 10,000 0.767
DevDiff 10,000 0.752
Decay 10,000 0.709
Temporal combined 50,000 0.782
Temporal combined + BM25 60,000 0.789

Public content-based [Ntoulas et al. 06] + temporal 50,096 0.901
All combined 60,096 0.902

Table 12. Performance of ensembles built on temporal content-based features.

this architecture we were able to compute all features, some of which would re-
quire excessive resources either when used by a smaller archive or if the collection
is larger or if fast classification is required for newly discovered sites during crawl
time. Some of the most resource-bound features involve the multistep neighbor-
hood in the page-level graph that already requires approximation techniques for
WEBSPAM-UK2007 [Castillo et al. 07].

We describe the computational requirements of the features by distinguish-
ing update and batch processing. For batch processing, an entire collection is
analyzed at once, a procedure that is probably performed only for reasons of
research. Update is probably the typical operation for a search engine. For an
Internet Archive, update is also advantageous as long as it allows fast reaction
to sample, classify, and block spam from a yet unknown site.

6.1. Batch Processing

The first expensive step involves parsing to create terms and links. The time
requirement scales linearly with the number of pages. Since apparently a few
hundred page sample of each host suffices for feature generation, the running
time is also linear in the number of hosts. For a very large collection such
as ClueWeb09, distributed processing may be necessary. Over 45 dual core
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Feature Set Step Hours Configuration

Content (A)
+ BM25

Parsing 36 45 dual core Pentium-D
3.0GHz machines, 4GB
RAM, Hadoop 0.21

Feature generation 36
Selection of labeled pages 3

Link
PageRank 10

5 eight-core Xeon 1.6GHz
machines, 40+GB RAMNeighborhood 4

Local features 1

Table 13. Processing times and cluster configurations for feature sets over
ClueWeb09.

Pentium-D 3.0GHz machines running Hadoop 0.21, we parsed the uncompressed
9.5TB English part of ClueWeb09 in 36 hours. Additional tasks such as term
counting, BM25 or content feature generation fits within the same time frame.
If features are generated for only a small labeled part of the data, it took us 3
hours to select the appropriate documents, and additional processing time was
negligible. Processing times are summarized in Table 13.

Host level aggregation allows us to proceed with a much smaller size data.
However for aggregation we need to store a large number of partial feature values
for all hosts unless we sort the entire collection by host, again by external memory
or Map-Reduce sort.

After aggregation, host-level features are inexpensive to compute. The follow-
ing features, however, remain expensive:

� Page level PageRank. Note that this is required for all content features
involving the maximum PageRank page of the host.

� Page level features involving multistep neighborhood such as neighborhood
size at distance k, as well as graph similarity.

In order to be able to process graphs of ClueWeb09 scale (4.7 billion nodes and
17 billion edges), we implemented message-passing C++ codes. Over a total
of 30 cores of six Xeon 1.6GHz machines, each with at least 40GB RAM, one
PageRank and one Bit Propagation iteration both took approximately one hour
while all other, local features completed within one hour.

Training the classifier for a few 100,000 sites can be completed within a day on
a single CPU on a commodity machine with 4-16GB RAM; here, costs strongly
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depend on the classifier implementation. Our entire classifier ensemble for the
labeled WEBSPAM-UK2007 hosts took a few hours to train.

6.2. Incremental Processing

As preprocessing and host-level aggregation is linear in the number of hosts, this
reduces to a small job for an update. This is especially true if we are able to
split the update by sets of hosts; in this case we may even trivially parallelize
the procedure.

The only nontrivial content-based information is related to document frequen-
cies: both the inverse document frequency term of BM25 [Robertson and Walker
94] and the corpus precision and recall dictionaries may in theory be fully up-
dated when new data is added. We may, however, approximate by the existing
values under the assumption that a small update batch will not affect these val-
ues greatly. From time to time, however, all features beyond (Aa) need a global
recomputation step.

The link structure is, however, nontrivial to update. Although incremental
algorithms exist to create the graph and to update PageRank-type features [De-
sikan et al. 05, 06, Kohlschütter et al. 06], these algorithms are rather complex
and their resource requirements are definitely beyond the scale of a small incre-
mental data.

Incremental processing may have the assumption that no new labels are given,
since labeling a few thousand hosts takes time comparable to batch processing
hundreds of thousands of them. Given the trained classifier, a new site can be
classified in seconds right after its feature set is computed.

7. Conclusions

With the illustration over the 100,000 host WEBSPAM-UK2007, the half-billion
page ClueWeb09, and the 190,000 host DC2010 datasets, we have investigated
the trade-off between feature generation and spam classification accuracy. We
observe that more features achieve better performance, however, when combining
them with the public link-based feature set we get only marginal performance
gain. By using the WEBSPAM-UK2007 data along with seven previous monthly
snapshots of the .uk domain, we have presented a survey of temporal features for
web spam classification. We investigated the performance of link, content, and
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temporal8 web spam features with ensemble selection. As practical message, we
may conclude that, as seen in Table 14, single machines may compute content and
BM25 features for a few 10,000 hosts only. Link features need additional resources
and either compressed, disk-based or, in the largest configuration, Pregel-like
distributed infrastructures.

We proposed graph-similarity-based temporal features, which aim to capture
the nature of linkage change of the neighborhoods of hosts. We have shown how to
compute these features efficiently on large graphs using a Monte Carlo method.
Our features achieve better performance than previously published methods,
however, when combining them with the public link-based feature set we get
only marginal performance gain.

By our experiments, it has turned out that the appropriate choice of the ma-
chine learning techniques is probably more important than devising new complex
features. We have managed to compile a minimal feature set that can be com-
puted incrementally very quickly to allow interceptance of spam at crawl time
based on a sample of a new web site. Sample configurations for web spam filtering
are summarized in Table 14.

Our results open the possibility for spam filtering practice in Internet archives
that are mainly concerned about their resource waste and would require fast
reacting filters. BM25-based models are suitable even for filtering at crawl time.

Some technologies remain open to be explored. For example, unlike expected,
the ECML/PKDD Discovery Challenge 2010 participants did not deploy cross-
lingual technologies for handling languages other than English. Some ideas worth
exploring include the use of dictionaries to transfer a bag-of-words-based model
and the normalization of content features across languages to strengthen the
language independence of the content features. The natural language-processing-
based features were not used either, which might help, in particular, with the
challenging quality attributes.
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A Few Features Worth More.” In Joint WICOW/AIRWeb Workshop on Web Quality
(WebQuality 2011) In conjunction with the 20th International World Wide Web
Conference in Hyderabad, India. ACM Press, 2011.
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