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Abstract The concept of active cyber defense has appeared in the literature in recent years.
However, there are no mathematical models for characterizing the effectiveness of active cyber
defense. In this paper, we fill the void by proposing a novel Markov process model that is native
to the interaction between cyber attack and active cyber defense. Unfortunately, the native
Markov process model cannot be tackled by techniques of which we are aware. We therefore
simplify, via mean-field approximation, the Markov process model as a dynamical system
model that is amenable to analysis. This allows us to derive a set of valuable analytic results
that characterize the effectiveness of four types of active cyber defense dynamics. Simulations
show that the analytic results are intrinsic to the native Markov process model, and therefore
justify the validity of the dynamical system model. We also discuss side effects of the mean-field
approximation and their implications.

1. INTRODUCTION

The concept of active cyber defense (e.g., the use of “white” or “good” worms to
identify and fight or kill malicious worms) has appeared in the literature in recent years.
However, the exploration has primarily focused on legal and policy issues [1, 7, 19, 21,
24, 34, 43, 44]. On the other hand, active cyber defense has already been implemented in
some sense (e.g., the Welchia worm attempted to “evict” the Blaster worm from infected
computers [30, 34]), and full-fledged active cyber defense is seemingly inevitable in the near
future [24, 36, 45]. It is therefore more imperative than ever to systematically characterize
the effectiveness of active cyber defense. In this paper, we initiate the theoretical study of
this aspect of cyber security, with emphasis on addressing the following basic question:
How effective is active cyber defense? Such characterization studies not only will deepen
our understanding of active cyber defense, but also will help in real-life decision-making
(e.g., when to launch active cyber defense) and even policy-making (e.g., whether to launch
active cyber defense at all).
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1.1. Our Contributions

In this paper we have formulated, to the best of our knowledge, the first mathematical
model for characterizing the effectiveness of active cyber defense. The interaction between
cyber attack and active cyber defense can be naturally modeled as a Markov process (Section
2). Unfortunately, we do not know how to tackle the native Markov process analytically
because all the techniques we are aware of do not appear to be applicable (see Section 1.2
for discussion). We therefore simplify, via the mean-field approximation, the native Markov
process model as a dynamical system model that is amenable to analysis. In the dynamical
system model, we obtain a set of analytic results (Sections 4–6). We then use simulations
to validate the accuracy of the dynamical system model (Section 8). Simulations show that
the analytic results derived from the dynamical system model are intrinsic to the native
Markov process model, and that the accuracy of the dynamical system model, in terms of
dynamics accuracy and threshold accuracy (which will be specified in Section 8), increases
with the average node degree. Moreover, the analytic results lead to various insights, with
some highlighted (informally) as follows:
� If neither the defender nor the attacker is superior to, or more advanced than, its op-

ponent in terms of cyber combat power (Type-I and Type-II dynamics with a certain
threshold), the effectiveness of active cyber defense will depend on (in some quanti-
tative fashion we derive) (i) the attack–defense network structure, (ii) the initial se-
curity state of the attack–defense network, (iii) the attacker’s and defender’s combat
power, and (iv) the attacker/defender strategy. We also characterize the benefit to the
strategic attacker/defender that initially “occupies” the large-degree nodes. Specifically,
we show the following: (i) when the attack–defense network structures are Erdős–Rényi
(ER) random graphs, a strategic defender/attacker does not gain significant benefit;
(ii) when the attack–defense network structures are power-law graphs, a strategic de-
fender/attacker gains significant benefit.1 Moreover, we obtain the following quantitative
result: The benefit to a strategic defender is maximized for the subclass of power-law
graphs with exponent γ = 2. These are described in Sections 4 and 5.

� If the defender is superior to (or more advanced than) the attacker in terms of cyber
combat power (Type-III dynamics), the defender can always use active cyber defense to
automatically “clean up” (i.e., cure) the entire network, regardless of the attack–defense
network structure and regardless of whether the attacker is strategic. This suggests that
cyber superiority could serve as an effective deterrence, and can be seen as a consequence
due to the lack of a certain threshold in the combat-power function. The explorations of
Type-III dynamics and its dual, Type-IV dynamics, are described in Section 6.

� As discussed in Section 7, active cyber defense can eliminate the asymmetry that is an
intrinsic weakness of reactive cyber defense, where the defender runs antivirus-software-
like tools on each computer to detect and cure infections caused by attacks or malware
that have penetrated the defense perimeter, such as firewalls. The cause of the asymmetry
is that when the defense is reactive, the attack effect is automatically amplified by the
network (a kind of network effect).

We stress that the focus of the present paper is to characterize the effectiveness of
active cyber defense. This means that we should not make any significant restrictions on

1These results are reminiscent of, and in parallel to, the connectivity-based robustness char-
acterizations of ER and power-law graphs [2], which is, however, a different perspective from ours
because the attacker in our model aims to compromise as many nodes as possible but does not delete
any (of the compromised) nodes.
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the parameter regimes and network structures. One important research problem, which is
orthogonal to our focus and is not addressed in the present paper, is how to extract model
parameters and an attack–defense network structure for a given cyber system. In principle,
the model parameters can be obtained by analyzing the strengths and weaknesses of the
attack and defense tools (“what if” analysis can be used in the absence of sufficient data)
and/or observing the outcome of experimental cyber combat.

The network structure can be derived from the cyber system configurations and
security policies, which may restrict which computers can directly communicate with
which other computers. The characterization results presented in this paper accommodate
a large class of parameter and structure scenarios.

1.2. Related Work

We classify related prior work based on two perspectives: one with respect to the
problem that is under investigation, and the other to the technique that is exploited to tackle
the problem.

From the perspective of the problem under investigation, we note that all existing
studies in both the mathematics literature and the physics literature are geared toward, in
the terms of the present paper, characterizing the outcome of reactive defense under various
parameter conditions (see, for example, [3, 4, 6, 8, 9, 12, 13, 28, 29, 40, 42, 46] and the
references therein). These studies substantially generalize the pioneering work of [16, 17],
which was based on homogeneous epidemic models in biological systems [14, 18, 25]. For
example, even for the very recent work [46], which studies the attack–defense dynamics
between one defender and multiple attackers that fight against each other as well, the
defense is still reactive.

In contrast, the present paper introduces a new research problem, namely characteriz-
ing the outcome of active defense under various model parameter conditions (including the
graph/network structure). To the best of our knowledge, we are the first to study the active
cyber defense problem mathematically, despite the fact that the technical practice of active
cyber defense has been discussed for years [1, 7, 19, 21, 24, 34, 43, 44]. This is so even
though our active cyber defense model is reminiscent of the voter model (see, for example,
[12, 23, 33, 35, 37]), whereby each node can adopt the state of one of its random neighbors
at each time step. However, the voter model corresponds to the special case of our active
cyber defense model with linear combat-power functions (the concept of combat-power
functions will be introduced later).

In contrast, we study general nonlinear combat-power functions, which explains why
the techniques for analyzing the voter model cannot tackle our active cyber defense model
(see Section 2.2 for further discussion).

Finally, it is worth mentioning that active cyber defense is different from automatic
patching [41], because the attacker may have already compromised many computers, and
that our active cyber defense model is different from the Moran process [27, 31], which
considers the mutation dynamics of homogeneous nodes.

From the perspective of the techniques that are exploited to tackle the epidemic
problem with network structures [3, 4, 6, 8, 9, 13, 28, 29, 40, 42, 46], there are mainly
two approaches. The first is to use mean-field approximation (e.g., [32]). Our dynamical
system model is also based on mean-field approximation of a native stochastic process
model. Mean-field approximation is a plausible first step in studying problems such as the
stochastic active cyber defense process we introduce in the present paper. Nevertheless, we
empirically characterize the accuracy of the mean-field approximations.
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The second approach is to directly tackle the native processes that take place on
network structures. This approach is more rigorous than the mean-field approximation
approach, but is often pursued after some understanding based on the mean-field approach
has been established.

This approach is valuable not only because it can derive rigorous results, but also
because it can (in)validate some results obtained via the mean-field models. For example,
the threshold behavior and the final outcome of the SIR (susceptible–infectious–removed)
epidemic process on random networks with clusters (communities) are studied in [3, 4],
which consider the SIR epidemic process in two steps: the SIR epidemic spreading within
clusters (local spreading) and then the SIR epidemic spreading across clusters. For those
studies, it is reasonable to use the branching process approximation, because it is necessary
to consider only the case of small initial infections (i.e., early stage of epidemic spreading)
and because the notion of offspring generation is well defined in SIR models. The authors
derive a rigorous central limit theorem under certain conditions.

In another line of investigation, [6] investigates the SIS (susceptible–infectious–
susceptible) contact process [20] on random graphs that are generated via preferential
attachment [5]. That rigorous study confirms the threshold result of [32] obtained via
mean-field approximation, namely that the epidemic threshold of scale-free networks is 0.

In [9], the authors study both SIR and SIS models on random graphs with power-law
degree distributions. Improving on some results in [9], it is shown in [28] that the epidemic
extinction time for the contact process on power-law random graphs grows exponentially
in the number of nodes, and in [29], bounds are obtained on the density of infected nodes.

The rest of the paper is organized as follows. In Section 2, we present the native
Markov process model and then show how to simplify it as a dynamical system model that
is amenable to analysis. In Section 3, we briefly review some background knowledge. In
Sections 4–6, we characterize four types of active cyber defense dynamics. In Section 7,
we explain why active cyber defense can eliminate an intrinsic weakness of reactive cyber
defense. In Section 8, we use simulations to show that the analytic results derived from the
dynamical system model are intrinsic to the native Markov process model. In Section 9,
we conclude the paper with future research directions. Lengthy proofs are deferred to an
appendix.

2. ACTIVE CYBER DEFENSE MODEL

A cyber system consists of networked computers/nodes of finite populations. A
computer has two states: compromised and secure (i.e., vulnerable but not compromised).
We may say that a compromised computer is “occupied” by an adversary/attacker, and a
secure computer is “occupied” by the defender. The adversary can compromise a computer
by exploiting its (e.g., zero-day or unpatched) vulnerabilities. Attacks are malware-like,
meaning that compromised computers can attack vulnerable computers in an epidemic-
spreading fashion. With active cyber defense, the defender can spread “good worm”-like
mechanisms in networks (just as the malicious worms spread) to identify and “clean up”
the compromised computers.

The interaction between cyber attack and active cyber defense creates an attack–
defense interaction structure, a graph topology that represents how the compromised nodes
attack the secure nodes and how the secure nodes use active cyber defense to clean up the
compromised nodes. We say that a defender (attacker) is strategic if it initially occupies the
large-degree nodes in the graph with higher probabilities. The attack–defense interaction
leads to the evolution of the cyber security state of the entire cyber system. We illustrate the
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Figure 1 Illustration of cyber security state evolution under active cyber defense, where the same initial state
may evolve, under different conditions, toward one of the three example equilibrium states—all nodes are secure
(filled circles); all nodes are compromised (open circles); some nodes are secure. The core research issue is to
characterize how the initial state, network topology, parameters, and attacker/defender strategies can govern the
evolution.

state evolution in Figure 1, where a filled circle means “secure” and an open circle means
“compromised.” As shown in Figure 1, the state evolution can exhibit rich phenomena (e.g.,
the existence of multiple kinds of equilibria). At a high level, the research objective is to
characterize how the evolution is governed by the initial state, graph topology, parameters,
and attacker/defender strategies. The characterization will allow us to answer some basic
questions such as under what conditions the cyber security state evolves toward an all-secure
equilibrium.

2.1. The Native Markov Process Model

Formally, cyber attack–defense takes place over a finite network/graph structure
G = (V,E), where V = {1, 2, . . . , n} is the set of nodes/computers and E is the set of
edges/arcs with (u, u) /∈ E (i.e., there are no self-loops in the setting of the problem). At
any point in time, a node v ∈ V is in one of two states: secure, meaning that it is secure
(i.e., vulnerable but not compromised by the attacker); or compromised, meaning that it is
compromised by the attacker. Node v’s state changes because of some u, where (u, v) ∈ E.
Note that (u, u) /∈ E, because a secure node will not clean itself up, and a compromised
node will not attack itself.

Since our study applies to both undirected and directed graphs, we focus on undirected
graphs while mentioning the differences between the two types as the need arises. We do
not make any significant restrictions on G, because in real life, G can have any topology.
This has become a standard practice in characterization studies of cyber security (see, for
example, [8, 13, 40, 42, 46]).
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The state of node v ∈ V at time t is a random variable ξv(t) ∈ {0, 1}:

ξv(t) =
{

1, v ∈ V is secure at time t,

0, v ∈ V is compromised at time t.

Correspondingly, we define

Bv(t) = P(ξv(t) = 1) and Rv(t) = P(ξv(t) = 0).

Denote by θ̃v,br(t) the rate at which v’s state changes from secure to compromised at
time t , which is a random variable because it depends on the states of v’s neighbors.
Similarly, denote by θ̃v,rb(t) the random rate at which v’s state changes from compromised
to secure at time t .

The state evolution of v ∈ V is naturally described as a Markov process (dubbed
“Markov process model” or “Markov model” for reference purposes) with the following
transition probabilities:

P(ξv(t + �t) = 1 | ξv(t)) =
{

�t · θ̃v,rb(t) + o(�t), ξv(t) = 0,

1 − �t · θ̃v,br(t) + o(�t), ξv(t) = 1,
(2.1)

and

P(ξv(t + �t) = 0 | ξv(t)) =
{

�t · θ̃v,br(t) + o(�t), ξv(t) = 1,

1 − �t · θ̃v,rb(t) + o(�t), ξv(t) = 0,
(2.2)

as �t → 0. Denote by Nv = {u ∈ V : (u, v) ∈ E} the set of neighbors of node v ∈ V . Since
the random rates θ̃v,rb(t) and θ̃v,br(t) are naturally determined by the random states of node
v’s neighbors, we use deterministic but possibly nonlinear functions frb(·) : R → [0, 1]
and fbr(·) : R → [0, 1] to define respectively the random rates θ̃v,rb(t) and θ̃v,br(t), as
follows:

θ̃v,rb(t) = frb

(
1

deg(v)

∑
u∈Nv

ξu(t)

)
,

θ̃v,br(t) = fbr

(
1

deg(v)

∑
u∈Nv

(1 − ξu(t))

)
.

We call frb(·) and fbr(·) the combat-power functions, because they abstract the attacker’s
and defender’s combat capabilities.

At this point, we do not know how to tackle the above native Markov process model.
One may note that the above combat-power functions are reminiscent of the so-called voter
model [12], whereby a node changes its opinion (or state) to the opinion of one random
neighbor according to a fixed-rate Poisson process. This allows the model to be transformed
into a dual process that works backward in time and becomes a random walk [12], which
makes it tractable.

In contrast, in our model, a node changes its state according to a rate that
is not fixed but instead depends nonlinearly on the states of its neighbors. This
nonlinearity prevents us from transforming our native Markov process model into a random
walk model, meaning that the technique used in [12] cannot solve the problem we encounter.
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This nonlinearity-induced difficulty suggests to us that we should simplify/approximate the
native Markov process model as a tractable dynamical system model.

2.2. Simplifying the Markov Process Model as a Dynamical System

Model

Now we show how to simplify the native Markov process model into a tractable
dynamical system model via the mean-field approximation. From (2.1), we have, for v ∈ V ,

Bv(t + �t) = �t · θ̃v,rb(t) · Rv(t) + (1 − �t · θ̃v,br(t))Bv(t) + o(�t),

which can be rewritten as

Bv(t + �t) − Bv(t)

�t
= θ̃v,rb(t) · Rv(t) − θ̃v,br(t) · Bv(t) + o(�t).

Similarly, from (2.2), we can derive for all v ∈ V ,

Rv(t + �t) − Rv(t)

�t
= θ̃v,br(t) · Bv(t) − θ̃v,rb(t) · Rv(t) + o(�t).

By letting �t → 0, we have for all v ∈ V ,

d

dt
Bv(t) = θ̃v,rb(t) · Rv(t) − θ̃v,br(t) · Bv(t),

d

dt
Rv(t) = θ̃v,br(t) · Bv(t) − θ̃v,rb(t) · Rv(t).

(2.3)

Note that

E
(
θ̃v,rb(t)

) = E

(
frb

(
1

deg(v)

∑
u∈Nv

ξu(t)

))
.

By the idea of mean-field approximation, we can move the expectation inside the combat-
power function and replace the mean of the random rate θ̃v,rb(t), denoted by θv,rb(t), with
the following term:

frb

(
1

deg(v)

∑
u∈Nv

E [ξu(t)]

)
= frb

(
1

deg(v)

∑
u∈Nv

Bu(t)

)
.

We can treat θ̃v,br(t) analogously. As a result, we obtain the mean state-transition probabil-
ities θv,rb(t) and θv,br(t) as

θv,rb(t) = frb

(
1

deg(v)

∑
u∈Nv

Bu(t)

)
and θv,br(t) = fbr

(
1

deg(v)

∑
u∈Nv

Ru(t)

)
.

Therefore, (2.3) becomes the following dynamical system model for all v ∈ V :

d

dt
Bv(t) = θv,rb(t) · Rv(t) − θv,br(t) · Bv(t),

d

dt
Rv(t) = θv,br(t) · Bv(t) − θv,rb(t) · Rv(t).

(2.4)
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RB

θv,br(t)

θv,rb(t)

Figure 2 State-transition diagram of a single node v ∈ V (B: secure; R: compromised).

Note that the dynamical system model for all v ∈ V encodes the graph topology via
parameters θv,br(t) and θv,rb(t), which encode the information about node v’s neighborhood
(including the states of node v’s neighbors). The corresponding state-transition diagram
for a node v ∈ V is depicted in Figure 2.

2.3. Instantiating the Dynamical System Model via Specific

Combat-Power Functions

Recall that the combat-power function frb(·) abstracts the defender’s power against
the attacker. It should satisfy the following properties: (i) frb(0) = 0; (ii) frb(1) =
1; (iii) frb(·) increases monotonically. This is intuitive, because the more secure
nodes surrounding an compromised node, the greater the chance the compromised
node will become secure (because of the active defense launched by the secure
nodes). In this paper, we consider four types of frb(·) with examples depicted in
Figure 3, where the first two types of frb(·) have an intrinsic threshold, while the others
do not.
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(d) Type IV: frb(x) = x2

Figure 3 frb(·) examples (Type II: frb(x) = 2x2 for x ∈ [0, 0.5], frb(x) = −2x2 + 4x − 1 for x ∈ [0.5, 1]).
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Type I. For a given threshold σ ∈ (0, 1), we define

θv,rb(t) = frb

(
1

deg(v)

∑
u∈Nv

Bu(t)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
1

deg(v)

∑
u∈Nv

Bu(t) > σ,

0,
1

deg(v)

∑
u∈Nv

Bu(t) < σ,

1

2
otherwise.

(2.5)

Intuitively, the defender is more powerful than the attacker when σ < 1
2 , less powerful than

the attacker when σ > 1/2, and equally powerful as the attacker when σ = 1/2.
Type II. For a given threshold τ ∈ (0, 1), we define frb(x) to be convex and frb(x) <

x for x ∈ [0, τ ); frb(x) to be concave and frb(x) > x for x ∈ (τ, 1]; frb(x) = x for x = τ ,
frb(0) = 0, and frb(1) = 1. Moreover, frb(·) is increasing and continuous in intervals [0, τ )
and (τ, 1]. Such functions are known as “sigmoid” functions. Intuitively, the defender is
more powerful than the attacker when τ < 1/2, less powerful than the attacker when
τ > 1/2, and equally powerful as the attacker when τ = 1/2.

Type III. frb(·) is concave, continuous, and increasing in [0, 1], frb(x) > x for
s ∈ (0, 1), and frb(0) = 0, frb(1) = 1. Intuitively, the defender is more advanced than the
attacker (i.e., the defender has cyber-combat superiority).

Type IV frb(·) is convex, continuous, and increasing in [0, 1], frb(x) < x for
x ∈ (0, 1), and frb(0) = 0, frb(1) = 1. Intuitively, the defender is less advanced than the
attacker. Note that a Type-IV frb(·) is dual to a Type-III frb(·).

Based on the above four types of combat-power functions, we focus on the four types
of combat-function combinations that satisfy

θv,br(t) = 1 − θv,rb(t). (2.6)

By combining (2.4) and (2.6), we obtain the following master equation for a single node
v ∈ V :

d

dt
Bv(t) = θv,rb(t)(1 − Bv(t)) − θv,br(t)Bv(t) = θv,rb(t) − Bv(t). (2.7)

The research task is to characterize Type-I–Type-IV dynamics, namely the dynamics of
master equation (2.7) with Type-I–Type-IV combat-power functions, respectively. For ex-
ample, for the Type-I combat-power function, we have

θv,br(t) = fbr

(
1

deg(v)

∑
u∈Nv

[1 − Bu(t)]

)
(2.8)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
1

deg(v)

∑
u∈Nv

[1 − Bu(t)] > 1 − σ,

0,
1

deg(v)

∑
u∈Nv

[1 − Bu(t)] < 1 − σ,

1

2
, otherwise.
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G = (V,E) graph/network that abstracts a cyber system from a cyber security
perspective, where |V | = n

Nv Nv = {u ∈ V : (u, v) ∈ E}
deg(v) v’s (in)degree, deg(v) = |Nv|

γ power-law exponent, P(deg(v) = k) ∝ k−γ

σ, τ indicator of defender’s relative combat-power in Type-I and Type-II
dynamics, respectively

ξv(t) state of node v at time t : secure (i.e., 1 or “secure") and
compromised (i.e., 0 or “compromised")

Bv(t) probability v ∈ V is secure at time t

Rv(t) probability v ∈ V is compromised at time t

α α = 1
n

∑
v∈V Bv(0), the average fraction of secure nodes at time

t = 0
S random set of secure nodes at time t = 0

θv,br(t) probability that node v’s state changes from secure to
compromised at time t

θv,rb(t) probability that node v’s state changes from compromised to
secure at time t

Table I Major notation used throughout the article.

We want to characterize, among other things, the roles of the thresholds specified in Type-I
and Type-II dynamics, and the consequences due to the lack of such thresholds in dynamics
of Types III and IV.

Summary of notation. Let R denote the set of real numbers, P(·), E(·), Var(·)
the probability, expectation, and variance functions, respectively. Other major notation is
summarized in Table I.

3. PRELIMINARIES

3.1. Arbitrary Networks

By “arbitrary network” we mean a given network G = (V,E) that may or may not
have a special structure/topology of interest. Most analytic results in this paper are derived
from dynamical systems that take place on arbitrary networks. In general, such results are
often independent of the statistical properties of the networks (e.g., the degree distribution).

In order to show the existence of the third kind of equilibrium illustrated in Figure
1 (i.e., some nodes secure and the other nodes compromised), we also consider a given
network that has a cluster (or community) structure. A network G = (V,E) has a clustered
structure of V1, V2, . . . , NK if

⋃
i Vi = V , Vi

⋂
Vj = ∅ for all i �= j , and the nodes

belonging to Vi are better connected than the nodes crossing Vi and Vj for every i �= j .
More specifically, this special phenomenon is related to the minimum node expansion in
cluster Vk for 1 ≤ k ≤ K , which is defined as

βk = inf
v∈Vk

∣∣Nv

⋂
Vk

∣∣
deg(v)

, where Nv = {u : (u, v) ∈ E}. (3.1)
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3.2. Generalized Random Graphs

In order to characterize the benefit to the strategic defender who initially occupies the
large-degree nodes with greater probabilities (a scenario that is often difficult to analyze),
we propose to use the generalized random graph model [11]. This means that the result is
applicable to a class of random networks (which, however, include the Erdős–Rényi (ER)
random graphs and power-law random graphs [11]), rather than arbitrary networks; this
slight restriction is compensated with some valuable analytic results. (Characterizing the
benefit to the strategic defender in arbitrary networks is left as an open problem.)

In the generalized random graph model, we are given an expected (in)degree sequence
(d1(n), . . . , dn(n)) that defines a family of graphs. Let dmin(n) = min{dj (n) : 1 ≤ j ≤ n}
and dmax(n) = max{dj (n) : 1 ≤ j ≤ n}. A random graph instance G(n) = (V (n), E(n))
can be obtained by linking each pair of nodes (u, v) with probability

pvu(n) = du(n)dv(n)∑n
k=1 dk(n)

(3.2)

independently of the others [11], where 0 ≤ pvu(n) ≤ 1 under the assumption (dmax(n))2 ≤∑n
k=1 dk(n).

For simplifying the analysis, we allow self-links while noting that our result can be
adapted to accommodate the fact that there are no self-links. In order to attain deeper insight,
we will consider two instantiations of the generalized random graph model, namely, the
classic Erdős–Rényi (ER) random graphs with d1(n) = · · · = dn(n) or edge probability p =
d1(n)/n, and the ubiquitous power-law random graphs with #{v ∈ V : deg(v) = k}/#V ∝
k−γ for some γ > 0. Note that γ does not need to be greater than 1, because dmax(n) is
finite.

Note that complete graphs are a special case of arbitrary networks and of generalized
random graphs. Since the theorems we present below hold both for arbitrary networks and
for generalized random graphs, they automatically apply to complete graphs.

4. CHARACTERIZING TYPE-I ACTIVE CYBER DEFENSE DYNAMICS

In this section, we first characterize Type-I active cyber defense dynamics with a
nonstrategic defender in arbitrary networks, where the initial occupation probability Bv(0)
is identical for all nodes. We then investigate the more difficult case of a strategic defender
with degree-dependent Bv(0) ∝ deg(v) in the generalized random graph model, where
the defender initially occupies the large-degree nodes with higher probabilities (i.e., the
large-degree nodes are appropriately better protected).

4.1. Characterizing Type-I Dynamics with a Nonstrategic Defender

Type-I dynamics with a nonstrategic defender is characterized through Theorems
4.1–4.6. The characterizations include the conditions under which the defender can or
cannot use active cyber defense to automatically clean up the entire network, and a method
for deciding whether an equilibrium is stable. Theorem 4.2 requires the following lemma,
whose proof is omitted because it is similar to (and simpler than) the proof of Lemma 5.1
that is given in Section 10.3.
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Lemma 4.1. Consider Type-I dynamics with threshold σ and system (2.7) in an arbitrary
network G = (V,E):

(i) If 1
deg(v)

∑
u∈Nv

Bu(0) > σ holds for all v ∈ V , then 1
deg(v)

∑
u∈Nv

Bu(t) > σ holds for
all v ∈ V and t ≥ 0, and minv∈V Bv(t) increases monotonically.

(ii) If 1
deg(v)

∑
u∈Nv

Bu(0) < σ holds for all v ∈ V , then 1
deg(v)

∑
u∈Nv

Bu(t) < σ holds for
all v ∈ V and t ≥ 0, and maxv∈V Bv(t) decreases monotonically.

Theorem 4.2. (A sufficient condition under which the defender or the at-

tacker will occupy the entire network.) Consider Type-I dynamics with threshold
σ and arbitrary network G = (V,E). If 1

deg(v)

∑
u∈Nv

Bu(0) > σ for all v ∈ V , then

limt→∞ Bv(t) = 1. If 1
deg(v)

∑
u∈Nv

Bu(0) < σ for all v ∈ V , then limt→∞ Bv(t) = 0.

Proof. We prove only the first part, because the second part can be proved analogously.
According to Lemma 4.1, we know that 1

deg(v)

∑
u∈Nv

Bu(t) > σ for all t ≥ 0 and v ∈ V .
This and (2.5) imply that θv,rb(t) = 1 for all t ≥ 0 and v ∈ V . Thus, system (2.7) becomes

dBv(t)

dt
= θv,rb(t) − Bv(t) = 1 − Bv(t).

This leads to Bv(t) = exp(−t)Bv(0) + 1 − exp(−t) and thus limt→∞ Bv(t) = 1.

Theorem 4.2 holds for arbitrary networks, including the special case of complete
graphs. Theorem 4.2 leads to the following insight (informally stated).

Insight 4.3. There is a quantitative relationship between the initial network security state
and the combat-power function as indicated by the threshold σ in a Type-I combat-power
function. Specifically, when neither the defender nor the attacker is superior to its opponent,
active cyber defense can automatically clean up a compromised network only when the
defender has occupied more than a threshold proportion σ of the network (or nodes). This
means that the defender may need to clean up some compromised nodes manually before
using active cyber defense to clean up the entire network automatically.

Theorem 4.4. (A sufficient condition under which neither the defender nor

the attacker will occupy the entire network.) Consider Type-I dynamics with
threshold σ and arbitrary clustered network G = (V,E). Let Bv(0) = αk for every v ∈ Vk

and let βk be the minimum node expansion as defined in (3.1). If αkβk > σ , then all nodes in
Vk will become secure; if (1 −αk)βk > 1 −σ , all nodes in Vk will become compromised.

Proof. If αkβk > σ for all nodes in Vk , then

1

deg(v)

∑
u∈Nv

Bu(0) ≥ 1

deg(v)
αk · |Nv ∩ Vk| ≥ αkβk > σ.

As in Theorem 4.2, we have limt→∞ Bv(t) = 1.
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If (1 − αk)βk > 1 − σ for all nodes in Vk , then

1 − 1

deg(v)

∑
u∈Nv

Bu(0) ≥ deg(v)

deg(v)
− |Nv ∩ Vk| · αk

deg(v)
− |Nv \ Vk|

deg(v)

= |Nv ∩ Vk|
deg(v)

(1 − αk) ≥ (1 − αk)βk > 1 − σ.

As in Theorem 4.2, we have limt→∞ Bv(t) = 0.

Theorem 4.4, which applies to arbitrary networks with the cluster structure, leads to
the following insight.

Insight 4.5. Suppose (i) neither the defender nor the attacker is superior to its opponent
and (ii) the initial network security state does not satisfy the conditions of Theorem 4.2.
Then the network structure plays an important role. Specifically, in clustered networks,
active cyber defense may be able to clean up only some clusters automatically, but not the
entire network.

Theorem 4.2 identifies two stable equilibria B∗ = [1, . . . , 1] and B∗ = [0, . . . , 0],
while Theorem 4.4 gives a condition under which another kind of stable equilibria exist (i.e.,
different clusters, some compromised, others secure). Because the stability of equilibria
gives a high-level description of Type-I dynamics (e.g., conditions under which the global
network security state evolves toward a particular equilibrium), we need some general
method/algorithm to evaluate the stability of equilibria. This is addressed by the following
theorem, whose proof is deferred to Section 10.1. Before presenting the theorem, we recall
that an equilibrium B∗ is stable if there exists a neighborhood of B∗ such that every
trajectory B(t) initially located in the neighborhood converges to B∗. We say that B∗ is a
stable equilibrium with exponential convergence if for each B(t) in the neighborhood, there
exist positive constants 
 > 0 and M > 0 such that ‖B(t) − B∗‖ ≤ Me−
t for all t ≥ 0.

Theorem 4.6. (Method/algorithm for determining stability of equilibria and

their emergence rates.) Consider Type-I dynamics with threshold σ and arbitrary
network G = (V,E). Let B∗ = [B∗

v ]v∈V be an equilibrium and B̄∗ = [1 − B∗
v ]v∈V .

(i) If

B∗
v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,
1

deg(v)

∑
u∈Nv

B∗
u > σ,

0,
1

deg(v)

∑
u∈Nv

B∗
u < σ,

(4.1)

holds for all v ∈ V , then both B∗ and B̄∗ are asymptotically stable equilibria with
exponential convergence.

(ii) If B∗
v = σ for some v ∈ V , then B∗ and B̄∗ are unstable.
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Recall that Theorem 4.2 says that the system has two equilibria: [1, . . . , 1] and
[0, . . . , 0]. Since both equilibria satisfy condition (4.1), Theorem 4.6 says that the two
equilibria are asymptotically stable with exponential convergence.

4.2. Characterizing Type-I Dynamics with a Strategic Defender

Now we investigate Type-I dynamics with a strategic defender, where the initial
probability that node v is secure is proportional to its degree, namely Bv(0) ∝ deg(v).
We analyze this situation in the generalized random graph model discussed above [11].
This means that our analytic result (Theorem 4.7 below) is not necessarily true for arbitrary
networks. We compensate this slight restriction with valuable analytic results, including the
quantification of the benefits when the attack–defense network structures are ER graphs and
power-law graphs. The basic idea behind the proof of Theorem 4.7 is to show that under the
given conditions, the event 1

deg(v)

∑
u∈Nv

Bu(0) > σ occurs almost surely. We accomplish
this using an asymptotic normal distribution, and by showing that the Lyapunov condition in
the central limit theorem and the Kolmogorov condition in the strong law of large numbers
[10] are satisfied. The proof details are given in Section 10.2.

Theorem 4.7. (Outcome of active cyber defense with strategic defender.) Let
G(n) = (V (n), E(n)) be an instance of an n-node random graph generated according
to a given expected (in)degree sequence (d1(n), . . . , dn(n)). Given the degree-dependent
probability Bv(0), we determine v’s state according to Bv(0) independently of everything
else. Let S = {v : v ∈ V (n) ∧Bv(0) = 1} be the set of secure nodes in G(n) at time t = 0,
and

φ(n) =
∑

v∈S deg(v)∑
u∈V (n) deg(u)

,

where deg(v) is the (in)degree of v ∈ V (n) in G(n). Let

s2
n,v =

∑
u∈V (n)

Bu(0)2pvu(n)(1 − pvu(n)), (4.2)

qn,v =
∑

u∈V (n)

Bu(0)3pvu(n)(1 − pvu(n))
[
(1 − pvu(n))2 + pvu(n)2

]
, (4.3)

w2
n,v =

∑
u∈V (n)

pvu(n)(1 − pvu(n)), (4.4)

gn,v =
∑

u∈V (n)

pvu(n)(1 − pvu(n))
[
(1 − pvu(n))2 + pvu(n)2

]
. (4.5)

Assume

(i) limn→∞ supv∈V (n) qn,v/s
3
n,v = 0.

(ii) limn→∞ supv∈V (n) gn,v/w
3
n,v = 0.

(iii) limn→∞
√

ln(n)/dmin(n) = 0.
(iv) limn→∞(

∑
v∈V (n) gn,v)/(

∑
v∈v(n) w

2
n,v)3/2 = 0.

(v) limn→∞(
∑

v∈V (n) qn,v)/(
∑

v∈v(n) s
2
n,v)3/2 = 0.

(vi) limn→∞
∑

v∈V (n)
1
d2

v
= 0.
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If limn→∞φ(n) > σ holds almost surely, then limn→∞ limt→∞ Bv(t) = 1 holds for all
v ∈ V (n) almost surely, namely

lim
n→∞ P

(
lim
t→∞ Bv(t) = 1

)
= 1.

If limn→∞φ(n) < σ holds almost surely, then limn→∞ limt→∞ Bv(t) = 0 holds for all
v ∈ V (n) almost surely, namely

lim
n→∞ P

(
lim
t→∞ Rv(t) = 1

)
= 1.

Note that Theorem 4.7 holds for generalized random graphs (rather than arbitrary
networks), which, however, are not necessarily dense. To see this, we observe that a
sufficient condition for assumption (v) is dmin � √

n, because

∑
v∈V (n)

1

d2
v (n)

≤ n

d2
min(n)

.

A necessary condition for assumption (v) is 〈d2
v (n)〉 � n, where 〈d2

v (n)〉 = 1
n

∑
v∈V (n) d

2
v (n),

because

∑
v∈V (n)

1

d2
v (n)

≥ n
1
n

∑
v∈V (n) d

2
v (n)

= n

〈d2
v (n)〉 .

These conditions do not imply that the graphs are dense. For example, the two conditions
are satisfied by dv(n) = O(

√
n log(n)) for all v ∈ V (n), which, however, implies that the

density of the graph converges to zero as n → ∞.
Theorem 4.7 corresponds to the case of a strategic defender with Bv(0) ∝ deg(v), and

it can be adapted to the case of a strategic attacker with Rv(0) ∝ deg(v). In what follows,
we discuss the implications of Theorem 4.7 in these two cases separately and then compare
them to draw deeper/quantitative insights with respect to ER and power-law graphs.

4.2.1. Characterizing the Qualitative Benefit to a Strategic Defender

with Bv(0) ∝ deg(v). Since Bv(0) ∝ deg(v), we have

Bv(0) = C1
deg(v)∑

u∈V (n) deg(u)
,

for some constant C1 > 0. Then the expected number of initial secure nodes is

∑
v∈V (n)

Bv(0) = C1

∑
v∈V (n)

deg(v)∑
u∈V (n) deg(u)

= C1.

Define

αthreshold = σ

n

[
∑

u∈V (n) deg(u)]2∑
v∈V (n) deg(v)2

, (4.6)
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where deg(v) is the (in)degree of node v ∈ V (n). With respect to a random set S of secure
nodes at time t = 0, we define the random variable χv(S):

χv(S) =
{

1, v ∈ S,

0, v /∈ S.

Since

φ(n) =
∑

u∈S deg(u)∑
v∈V (n) deg(v)

=
∑

u∈V (n) deg(u)χu(S)∑
v∈V (n) deg(v)

≈
∑

u∈V (n) deg(u)Bv(0)∑
v∈V (n) deg(v)

> σ, (4.7)

Theorem 4.7 implies the following: if |S|/n > αthreshold, then limt→∞ Bv(t) = 1 for
v ∈ V (n); if |S|/n < αthreshold, then limt→∞ Bv(t) = 0 for v ∈ V (n). Since

[
∑

u∈V (n) deg(u)]2∑
v∈V (n) deg(v)2

≤ n,

we have αthreshold ≤ σ . This means that a strategic defender can use active cyber defense to
clean up the entire network automatically even if the defender initially occupies a proportion
less than σ but more than αthreshold (≤ σ ) of the network. This leads to the following insight.

Insight 4.8. If the large-degree nodes are better protected by the strategic defender, the
strategic defender can use active cyber defense to clean up the network automatically even
if it occupies only a proportion αthreshold (≤ σ ) of the network.

4.2.2. Characterizing the Qualitative Benefit to a Strategic Attacker with

Rv(0) ∝ deg(v). When Rv(0) ∝ deg(v), we have Rv(0) = C2 deg(v)/
∑

u∈V deg(u) for some
constant C2 > 0. According to (2.8), fbr(·) is discontinuous at 1 − σ . The compromised-
node initial occupation threshold is

1 − σ

n

[
∑

u∈V deg(u)]2∑
v∈V deg(v)2

.

Thus, the secure-node initial occupation threshold is

βthreshold = 1 − 1 − σ

n

[
∑

v∈V deg(v)]2∑
v∈V deg(v)2

. (4.8)

If |S|/n > βthreshold, then limt→∞ Bv(t) = 1; if |S|/n < βthreshold, then we have
limt→∞ Bv(t) = 0. Since βthreshold ≥ σ , this leads to the following insight.

Insight 4.9. If the large-degree nodes are compromised by a strategic attacker, the defender
can use active defense to clean up the network only after the defender occupies a proportion
βthreshold (≥ σ ) of the network.

4.2.3. Characterizing the Quantitative Benefit to a Strategic Defender in

ER Graphs. For ER graphs with edge probability p, the degree distribution follows a
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binomial distribution B(n, p):

P(deg(v) = k) =
(

n

p

)
pk(n − p)k, k = 0, 1, . . . .

Above, we showed that

αthreshold = σ
p

p + p(1 − p)/n
, βthreshold = 1 − (1 − σ )

p

p + p(1 − p)/n
.

As n → ∞, both αthreshold and βthreshold converge to the threshold σ . More specifically,

βthreshold − αthreshold = 1 − p

p + p(1 − p)/n

converges to 0, while

βthreshold

αthreshold
= 1 + 1 − p

σn

converges to 1. This leads to the following insight.

Insight 4.10. For large ER graphs, the security benefit obtained by a strategic de-
fender/attacker is not significant, because the node degrees are relatively homogeneous.
(This is reminiscent of, and parallel to, the connectivity-based robustness of ER networks,
namely that ER networks are resilient against strategic deletion of large-degree nodes [2].
Note, however, that in our model, the attacker aims to compromise nodes but does not
delete any nodes.)

4.2.4. Characterizing the Quantitative Benefit to a Strategic Defender in

Power-Law Graphs. Consider power-law graphs with exponent γ . Let

C =
∫ dmax(n)

dmin(n)
k−γ dk = dmax(n)1−γ − dmin(n)1−γ

1 − γ
.

By replacing the sum with integral in (4.6), we can define

αthreshold = σ

(
n

C

∫ dmax(n)

dmin(n)
k1−γ dk

)2/(
n

C

∫ dmax(n)

dmin(n)
k2−γ dk

)

= σ

n

(
n2(dmax(n)2−γ − dmin(n)2−γ )2/(2 − γ )2

(dmax(n)1−γ − dmin(n)1−γ )2/(1 − γ )2

)
/(

n(dmax(n)3−γ − dmin(n)3−γ )/(3 − γ )

(dmax(n)1−γ − dmin(n)1−γ )/(1 − γ )

)
.
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This leads to four cases: γ /∈ {1, 2, 3}, γ = 1, γ = 2, γ = 3. Let z = dmax(n)/dmin(n). For
γ /∈ {1, 2, 3}, one can show that

(dmax(n)2−γ − dmin(n)2−γ )2/(2 − γ )2

(dmax(n)1−γ − dmin(n)1−γ )2/(1 − γ )2

/
(dmax(n)3−γ − dmin(n)3−γ )/(3 − γ )

(dmax(n)1−γ − dmin(n)1−γ )/(1 − γ )

= (z2−γ − 1)2

(z1−γ − 1)(z3−γ − 1)

(3 − γ )(1 − γ )

(2 − γ )2
.

For γ = 1, 2, 3, we can reason in a similar fashion. As a result, we can define

h(z, γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z2−γ − 1)2

(z1−γ − 1)(z3−γ − 1)

(3 − γ )(1 − γ )

(2 − γ )2
, γ �= 1, 2, 3,

2
z − 1

z + 1

1

ln(z)
, γ = 1,

z(ln(z))2

(z − 1)2
, γ = 2,

2
z − 1

z + 1

1

ln(z)
, γ = 3.

If the defender is strategic, a sufficient condition for limt→∞ Bv(t) = 1 is |S|/n >

αthreshold = σ ·h(z, γ ); if the attacker is strategic, a sufficient condition for limt→∞ Bv(t) = 1
is |S|/n > βthreshold = 1 − (1 − σ )h(z, γ ). Therefore, we have

βthreshold − αthreshold = 1 − h(z, γ ), (4.9)

βthreshold

αthreshold
= 1 − (1 − σ )h(z, γ )

σ · h(z, γ )
= 1 + 1 − h(z, γ )

σ · h(z, γ )
. (4.10)

Equations (4.9) and (4.10) reach their maximum at γ = 2. This leads to the following
insight.

Insight 4.11. For power-law graphs, the benefit to a strategic defender/ attacker is sig-
nificant. (This is also reminiscent of, and parallel to, the connectivity-based robustness
of power-law networks, namely that power-law networks are easily disrupted by strategic
deletion of large-degree nodes [2]. Again, in our model the attacker aims to compromise
nodes but does not delete any nodes.) Moreover, the benefit to a strategic defender is
maximized for the subclass of power-law networks with exponent γ = 2.

5. CHARACTERIZING TYPE-II ACTIVE CYBER DEFENSE DYNAMICS

Type-II dynamics is similar to Type-I dynamics, except the following: A Type-I
combat-power function is discontinuous near the threshold σ , whereas a Type-II combat-
power function is continuous and differentiable near the threshold τ . For the case of a
nonstrategic defender with node-independent Bv(0), we obtain the following theorems,
which are analogous to Theorems 4.2–4.6. Theorem 5.2 requires the following lemma,
whose proof is given in Section 10.3.
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Lemma 5.1. Consider Type-II dynamics with threshold τ and system (2.7) in an arbitrary
network G = (V,E).

(i) If 1
deg(v)

∑
u∈Nv

Bu(0) > τ holds for all v ∈ V , then 1
deg(v)

∑
u∈Nv

Bu(t) > τ holds for
all v ∈ V and t ≥ 0, and minv∈V Bv(t) increases monotonically.

(ii) If 1
deg(v)

∑
u∈Nv

Bu(0) < τ holds for all v ∈ V , then 1
deg(v)

∑
u∈Nv

Bu(t) < τ holds for
all v ∈ V and t ≥ 0, and maxv∈V Bv(t) decreases monotonically.

A proof of the following theorem, which holds for arbitrary networks, is given in
Section 10.4.

Theorem 5.2. (A sufficient condition under which the defender or the attacker

will occupy the entire network.) Consider Type-II dynamics with threshold τ and arbi-
trary network G = (V,E). If 1

deg(v)

∑
u∈Nv

Bu(0) > τ for all v ∈ V , then limt→∞ Bv(t) = 1

for all v ∈ V . If 1
deg(v)

∑
u∈Nv

Bu(0) < τ for all v ∈ V , then limt→∞ Bv(t) = 0 for all
v ∈ V .

Theorem 5.3. (A sufficient condition under which neither the defender nor

the attacker will occupy the entire network.) Consider Type-II dynamics with
threshold τ and arbitrary network G = (V,E) with the cluster structure. Let Bv(0) = αk

for every v ∈ Vk , and let βk be the minimum node expansion as defined in (3.1). If αkβk > τ ,
then all nodes in Vk will become secure, while if (1 − αk)βk > 1 − τ , then all nodes in Vk

will become compromised.

The proof of Theorem 5.3 is similar to that of Theorem 4.4. A proof of the following
theorem is given in Section 10.5. Both theorems hold for arbitrary networks.

Theorem 5.4. (Method/algorithm for determining stability of equilibria.) Con-
sider Type-II dynamics with threshold τ and arbitrary network G = (V,E). Let
B∗ = [B∗

v ]v∈V be an equilibrium and B̄∗ = [1 − B∗
v ]v∈V .

(i) Equilibria B∗ = [1, . . . , 1] and B∗ = [0, . . . , 0] are asymptotically stable with
exponential convergence.

(ii) If B∗
v = τ for some v ∈ V , then B∗ and B̄∗ are unstable.

For the case of a strategic defender with Bv(0) ∝ deg(v), we can obtain a result for
generalized random graphs in parallel to Theorem 4.7 via a similar proof. We omit the
lengthy details. In summary, we have the following insight.

Insight 5.5. Insights 4.3–4.11 above are equally applicable to Type-II dynamics.

6. CHARACTERIZING TYPE-III AND TYPE-IV ACTIVE CYBER DEFENSE

DYNAMICS

Type-III and Type-IV combat-power functions represent that the defender (attacker)
is superior to, or more advanced than, its opponent. Due to the lack of threshold in the



42 XU ET AL.

computer-power functions, an immediate consequence is that there is no difference between
the case of a nonstrategic defender and that of a strategic defender. Further consequences
due to the lack of a threshold are characterized as follows.

Theorem 6.1. (Characterizing Type-III dynamics.) Consider Type-III dynamics in
an arbitrary network G = (V,E).

(i) If Bv(0) > 0 for all v ∈ V , then limt→∞ Bv(t) = 1 for all v ∈ V .
(ii) The equilibrium Bv(0) = [1, . . . , 1] is asymptotically stable with exponential conver-

gence.
(iii) The equilibrium Bv(0) = [0, . . . , 0] is unstable.

Part (i) of Theorem 6.1 can be proved like the first half of Theorem 5.2. Parts (ii) can
be proved like part (i) of Theorem 5.4. Part (iii) can be proved like part (ii) of Theorem
5.4. Since Type-IV dynamics is dual to Type-III dynamics, from Theorem 6.1 we obtain
the following result.

Theorem 6.2. (Characterizing Type-IV dynamics.) Consider Type-IV dynamics in
an arbitrary network G = (V,E).

(i) If Bv(0) < 1 for all v ∈ V , then limt→∞ Bv(t) = 0 for all v ∈ V .
(ii) The equilibrium Bv(0) = [0, . . . , 0] is asymptotically stable with exponential conver-

gence.
(iii) The equilibrium Bv(0) = [1, . . . , 1] is unstable.

Theorems 6.1–6.2, which hold for arbitrary networks, lead to the following insight.

Insight 6.3. If the defender is superior to the attacker in terms of cyber combat power,
the defender can always use active defense to automatically clean up the entire network
as long as there are a few computers that are not compromised. In the extreme case
in which the attacker has compromised the entire network, the defender needs to clean
up only a few computers manually before launching active defense to clean up the entire
network automatically. This suggests that cyber combat superiority can serve as an effective
deterrence.

7. ADVANTAGE OF ACTIVE CYBER DEFENSE OVER REACTIVE CYBER

DEFENSE

Current cyber defense is mainly reactive, whereby the defender runs “antivirus
software”-like tools on each computer to scan and cure infections, which are caused by
attacks and/or malware that have penetrated the defense perimeter, such as firewalls. Re-
active cyber defense inevitably causes an asymmetry that is advantageous to the attacker,
because the attack effect is automatically amplified by the network (a kind of “network
effect”). Specifically, reactive cyber defense may be modeled using the well-known SIS
(susceptible–infectious–susceptible) model while accommodating arbitrary attack–defense
network topologies.
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A sufficient condition for the epidemic to die out is [8]

λ1,A <
cure capability

spreading capability
,

where λ1,A is the largest eigenvalue of the adjacency matrix corresponding to the attack–
defense structure and is in a sense the average node degree or connectivity [22]; cure
capability abstracts the defender’s reactive defense power (i.e., the probability that a com-
promised node becomes a susceptible node in a single time step), and spreading capability
abstracts the attacker’s attack power (i.e., the probability that a compromised node suc-
cessfully attacks a susceptible neighboring node at a single time step). This means that
the attacker always benefits from rich connectivity, because the attack effect is amplified
by λ1,A, which explains why the asymmetry phenomenon is advantageous to the attacker
[26, 38, 39].

On the other hand, Sections 4–6 show that the asymmetry disappears with active
cyber defense because λ1,A (or its like) does not play a role in the analytic results. This
justifies the use of model-based characterization studies. In summary, we have the following
insight.

Insight 7.1. Active cyber defense eliminates the attack amplification phenomenon,
namely the asymmetry between cyber attack and reactive cyber defense.

8. VALIDATING THE DYNAMIC SYSTEM MODEL VIA SIMULATION

The above characterizations of active cyber defense dynamics are based on the
dynamical system model, which is the mean-field approximation of the native Markov
process model. Therefore, we need to show whether the analytic results derived from the
dynamical system model are intrinsic to the Markov process model.

8.1. Validation Methodology

Our validation methodology is centered on examining the dynamic accuracy and the
threshold accuracy of the dynamical system model. For examining the dynamic accuracy,
we compare the mean secure occupation probability in the dynamical system model,
namely 〈Bv(t)〉 = 1

|V |
∑

v∈V Bv(t), and the simulation-based mean fraction of secure

nodes in the Markov process model, namely 〈ξv(t)〉 = 1
|V |
∑

v∈V ξv(t). If 〈ξv(t)〉 and
〈Bv(t)〉 exhibit a similar, if not exactly the same, dynamic behavior, we conclude that
the analytic results derived from the dynamical system model are intrinsic to the Markov
process model. (i) Our simulation of the Markov process model is based on (2.1), namely

P{ξv(t + �t) = 1 | ξv(t), v ∈ N} =
{

�t · θ̃v,rb(t), ξv(t) = 0,

1 − �t · θ̃v,br(t), ξv(t) = 1,

where the random rate θ̃v,rb is replaced with its mean θv,rb as specified in (2.5). Simulation
results are based on the average of 50 simulation runs. (ii) Our numerical calculation in
the dynamical system model is based on (2.7), namely

Bv(t + �t) = Bv(t) + [θv,rb(t) − Bv(t)]�t.
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In both cases, we set �t = 0.01.
For examining the threshold accuracy, we study whether the threshold σ in the

dynamical system model is faithful to the threshold σmarkov in the Markov process model. In
order to to compute σmarkov, we use the following numerical method. Since the convergence
of 〈ξv(t)〉 is probabilistic in a very small interval that contains σ , we define σmarkov as the
median value in that interval. Specifically, let a1 be the smallest value such that an initial
secure occupation greater than a1 will cause all nodes to become secure in all 50 runs.
Let b1 be the largest value such that an initial secure occupation smaller than b1 will cause
all nodes to become compromised in all 50 runs. We set σmarkov = 1

2 (a1 + b1).
In our simulation, we use two kinds of graphs:

� ER random graph: It has n = 2000 nodes and independent link probability p = 0.02.
� Power-law random graph: It has n = 2000, exponent γ = 2.5, minimum node degree 2,

and maximum node degree 120.

8.2. Dynamics Accuracy of the Dynamical System Model

Overall dynamics accuracy. First, let us consider Type-I dynamics and a non-
strategic defender with node-independent identical initial occupation probability Bv(0).
Figure 4 confirms that Theorem 4.2, which was proven in the dynamical system model, is
indeed intrinsic to the Markov process model. Specifically, in the dynamical system model,
the 〈Bv(t)〉’s corresponding to Bv(0) = 0.4 > σ = 1/3 all converge to 1, and the 〈Bv(t)〉’s
corresponding to Bv(0) = 0.2 < σ = 1/3 all converge to 0. In the Markov process model,
the 〈ξv(t)〉’s corresponding to P{ξv(0) = 1} = 0.4 all converge to 1, and the 〈ξv(t)〉’s
corresponding to P{ξv(0) = 1} = 0.2 all converge to 0. Therefore, the dynamic behavior
indicated by Theorem 4.2 is also exhibited by the Markov process model.

Second, let us look at Type-I dynamics and a strategic defender with Bv(0) ∝ deg(v).
Define

η =
∑

u∈S deg(u)∑
v∈V deg(v)

,

where S is the set of secure nodes at time t = 0. Inequality (4.7) indicates that if η > σ ,
then all nodes will become secure, while if η < σ , all nodes will become compromised.
In our simulation, we set σ = 0.5. Figure 5(a) shows that in the ER graph, both 〈Bv(t)〉
in the dynamical system model and 〈ξv(t)〉 in the Markov process model converge to 1
when η = 0.52 > σ = 0.5 and converge to 0 when η = 0.45 < σ = 0.5. Figure 5(b)
shows that in the power-law network, both 〈Bv(t)〉 and 〈ξv(t)〉 converge to 1 when η = 0.45
(< σ = 0.5) and converge to 0 when η = 0.35 (far smaller than σ = 0.5). These confirm
the phenomenon that is implied by Theorem 4.7, namely that the effect of strategic defense
is not significant in ER networks but significant in power-law networks. In any case, the
simulation results demonstrate that the phenomenon exhibited by the dynamical system
model is intrinsic to the Markov process model.

Third, let us look at dynamics of Types II–IV and a nonstrategic defender
with node-independent identical initial occupation probability Bv(0). Consider a Type-
II combat-power function with τ = 0.5, frb(x) = 2x2 for x ∈ [0, 0.5], and
frb(x) = −2x2 + 4x − 1 for x ∈ [0.5, 1]. For the dynamical system model,
Figures 6(a) and 6(b) show that Bv(0) = 0.4 < τ = 0.5 implies that all nodes will become
compromised, and Bv(0) = 0.6 > τ = 0.5 implies that all nodes will become secure.



A STOCHASTIC MODEL OF ACTIVE CYBER DEFENSE DYNAMICS 45

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time

〈 B
v(t

)
〉,

〈ξ
v(t

)〉 Markov model (<σ)
Markov model (>σ)
Dynamic System (>σ)
Dynamic System (<σ)

(a) ER graph

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time

〈 B
v(t

)
〉,

〈ξ
v(t

)〉 Markov model (>σ)
Dynamic System (<σ)
Dynamic System (>σ)
Markov model (<σ)

(b) Power-law graph

Figure 4 〈Bv(t)〉 vs. 〈ξv(t)〉 in Type-I dynamics with σ = 1/3 and nonstrategic defender.

In the Markov process model, the same phenomenon is exhibited with the same initial
condition P{ξv = 1} = Bv(0). This validates Theorem 5.2. For a Type-III combat-power
function with frb(x) = x1/2, Figures 6(c) and 6(d) demonstrate that 〈Bv(t)〉 corresponding
to Bv(0) = 0.02 converges to 1 in the dynamical system model. The same phenomenon is
exhibited in the Markov process model. This validates Theorem 6.1. For a Type-IV combat-
power function frb(x) = x2, Figures 6(e) and 6(f) validate that 〈Bv(t)〉 corresponding to
Bv(0) = 0.98 converges to 0. The same phenomenon is exhibited in the Markov process
model. This confirms that the dynamic behavior indicated by Theorem 6.2 is also exhibited
by the Markov process model.

Fourth, for power-law networks and a strategic defender with Bv(0) ∝ deg(d), we
derived the sufficient condition |S|/n > σ · h(z, γ ) for limt→∞ Bv(t) = 1, meaning that in
order for the defender to use active cyber defense to automatically clean up the network, the
defender needs to occupy more than a proportion σ ·h(z, γ ) of the nodes, which is minimum
when h(z, γ ) is minimum. As shown in Figure 7(a), for fixed z, h(z, γ ) is minimum at γ = 2,
which corresponds to the subclass of power-law networks that maximize the benefit to the
strategic defender. Figure 7(b) plots the simulation results in the Markov process model.
We observe that σmarkov is minimum at γ = 2 in the Markov model as well. This further
confirms that the particular conclusion drawn in the dynamic model, that the benefit to
the strategic defender is maximized for power-law graphs with exponent γ = 2, is also
intrinsic to the Markov process model.
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Figure 5 〈Bv(t)〉 vs. 〈ξv(t)〉 in Type-I dynamics with σ = 1/2 and strategic defender.

Dynamics inaccuracy: cause and characteristics. In the above, our simu-
lation results show, from the perspective of system state dynamics, that the dynamical
system model offers overall accurate approximation to the Markov process model. Still,
Figures 4–6 visually exhibit the following phenomenon: the dynamical system model
sometimes underestimates and sometimes overestimates the dynamics simulated from the
Markov process model. What is the cause of this phenomenon? To answer this question,
we observe that the master equation (2.3) can be rewritten as

d

dt
B̃v(t) = θ̃v,rb(t) − B̃v(t), (8.1)

where

θ̃v,rb(t) = E

(
frb

(
1

deg(v)

∑
u∈Nv

ξv(t)

))

and θ̃v,rb(t) = 1 − θ̃v,br(t), to be consistent with (2.6). It can be seen that if frb(·) is convex,
then

θ̃v,rb(t) = E

(
frb

(
1

deg(v)

∑
u∈Nv

ξv(t)

))
≥ frb

(
E
(

1

deg(v)

∑
u∈Nv

ξv(t)

))

= θv,rb(t).

Analogously, if frb(·) is concave, then θ̃v,rb(t) ≤ θv,rb(t).
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Figure 6 〈ξv(t)〉 vs. 〈Bv(t)〉 in dynamics of Types II–IV with nonstrategic defender.

As a result, the above phenomenon can be explained as follows: For Type-I and
Type-II combat-power functions, the dynamics in the dynamical system model under-
estimates the dynamics in the native Markov process model when 1

deg(v)

∑
u∈Nv

ξv(t) is
below the threshold in the combat-power function, and overestimates the dynamics in
the Markov process model when 1

deg(v)

∑
u∈Nv

ξv(t) is above the threshold (see Figures 4
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Figure 7 Power-law networks with exponent γ = 2 maximize the benefit to strategic defenders.
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and 5 and Figures 6(a) and 6(b)). For Type-III combat-power functions, which can be
regarded as concave over the region [0, 1], the dynamics in the dynamical system model
overestimates the dynamics in the Markov process model (see Figures 6(c) and 6(d)).
Analogously, for Type-IV combat-power functions, the dynamics of the dynamical system
model underestimates the dynamics in the Markov process model (see Figures 6(e) and
6(f)).

Having explained the cause of the slight dynamic inaccuracy, we want to establish
some deeper understanding of it. In particular, we want to know how the inaccuracy
may depend on the average node degree. For this purpose, we consider the following
notion of relative error between the dynamical system model and the Markov process
model:

RE =
∫ T

0 [B̃v(t) − Bv(t)]2 dt∫ T

0 B̃2
v (t) dt

,

where B̃v(t) is the probability that node v is secure in the Markov process model, and
Bv(t) is the dynamic system state.

To investigate the impact of average node degree, we fix the variance of the node
degrees, denoted by dvar. Consider the generalized random graph model with a given
expected degree sequence that follows the power-law distribution. By fixing the variance
dvar and the ratio r between the minimum and maximum expected degrees as dmax =
r ∗ dmin, we derive dmin with respect to the varying power-law exponent γ from 1 to 6, as
follows:

dmin =
√

dvar
1−γ

3−γ
r3−γ −1
r1−γ −1 − 1−γ

(2−γ )2
r2−γ −1

(r1−γ −1)2

.

With r = 20 and dvar = 400, we obtain a series of generalized random graphs of 2000
nodes.

Although we cannot precisely fix the variance, the actual standard deviation of degrees
for different values of γ is quite stable: 20.47 ± 0.48. We run the Markov process model
and the dynamical system model on the random graphs to calculate the relative errors.
We find, as shown in Figure 8, that the relative errors decrease with the average node
degree.
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8.3. Threshold Accuracy of the Dynamic System Model

Now we examine the accuracy of the dynamical system model from a different
perspective: threshold accuracy. That is, we examine the accuracy of the threshold σ

derived from the dynamical system model with respect to the threshold σmarkov, which is
numerically derived from the Markov process model. For the special case of Type-III and
Type-IV combat-power functions, which have no threshold, we observe the following: For
Type-III combat-power functions, if B̃v(0) > 0 for some nodes that can reach all other
nodes, then limt→∞ B̃v(t) = 1 for all v ∈ V . For Type-IV combat-power functions, if
R̃v(0) > 0 for some nodes that can reach all other nodes, then limt→∞ B̃v(t) = 0 for
all v ∈ V . To see this, we note that in the case of Type-III combat-power functions, the
following holds:

θ̃v,rb(t) = E

[
f

(
1

deg(v)

∑
u∈Nv

ξu(t)

)]
≥ E

[
1

deg(v)

∑
u∈Nv

ξu(t)

]

=
[

1

deg(v)

∑
u∈Nv

B̃u(t)

]
.

The case of Type-IV combat-power functions can be treated analogously. However, the
situation for Type-I and Type-II combat-power functions is very different, as we elaborate
below.

Threshold (in)accuracy for Type-I and Type-II combat-power functions:

cause and characteristics. We illustrate the following threshold-drifting phenomenon
with a specific frb(·) in Type-I dynamics. Figures 9(a) and 9(b) plot σmarkov and σ in the
case of a nonstrategic defender with node-independent identical probability Bv(0). Figures
9(c) and 9(d) plot σmarkov and σ in the case of a strategic defender with Bv(0) ∝ deg(v). We
observe that Figure 9(d) exhibits a pattern that is different from the others, which we cannot
explain at the moment but which we plan to investigate in the future. In all other cases,
we observe the following: if σ < 0.5, then σmarkov < σ ; if σ > 0.5, then σmarkov > σ . We
call this the threshold-drifting phenomenon, which indicates that the threshold σ in the
dynamical system model may deviate from the threshold σmarkov in the Markov process
model.

What is the cause of the threshold-drifting phenomenon? In order to answer this
question, let us define α = 1

n

∑
v∈V Bv(0), namely the average fraction of secure nodes

at time t = 0. The probability that k out of node v’s deg(v) neighbors are initially
secure is

Q(deg(v), α, k) =
(

deg(v)

k

)
αk(1 − α)deg(v)−k.

Suppose that at each time step, the occupation probability approximately follows the bino-
mial distribution. For a random node v̄, its expected degree is 〈deg(v)〉 and the probability
that v̄ is secure is ν(t) = 〈P{ξv = 1}〉, with ν(0) = α. Now we consider the dy-
namical system model. The mean of θv̄,rb(t) is the probability that the actual number of
secure neighbors is greater than σ · 〈deg(v)〉. Denote this probability by θσ (ν(t), 〈deg(v)〉).
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Figure 9 Threshold-drifting phenomenon: dotted diagonal line corresponds to σ and solid curves correspond to
σmarkov.

Then,

θσ (ν(t), 〈deg(v)〉)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k>ν(t)·〈deg(v)〉

Q(〈deg(v)〉, ν(t), k)

if σ · 〈deg(v)〉 is not an integer,∑
k>ν(t)·〈deg(v)〉

Q(〈deg(v)〉, ν(t), k) + 1

2
Q(〈deg(v)〉, ν(t), σ · deg(v))

if σ · 〈deg(v)〉 is an integer.

Hence, we can use the following equation to approximate the Markov process model:

dν(t)

dt
= θσ (ν(t), 〈deg(v)〉) − ν(t).

This one-dimensional differential equation has two stable equilibria, ν = 0 (i.e., all nodes
are compromised) and ν = 1 (i.e., all nodes are secure). The critical value of the initial
condition between the attracting basins ν = 0 and ν = 1 is the nontrivial solution of
θσ (ν, 〈deg(v)〉) − ν = 0, namely the solution other than the trivial solutions 0 and 1. The
critical value in the dynamical system model approximates σmarkov. As shown in Figure 9,
σmarkov �= σ , which explains the threshold-drifting phenomenon.

Having explained the cause of the threshold-drifting phenomenon, we suspect that the
degree of threshold-drifting also depends on the average node degree (more specifically, the
threshold-drifting phenomenon disappears with the average degree). To confirm/disconfirm
this, we compare in Figure 10 the threshold σmarkov in the Markov process model and the
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Figure 10 The greater the average node degree, the better the approximation of σmarkov (curve) to σ (line).

threshold σ in the dynamical system model, with respect to identical initial secure-
occupation probability Bv(0). In both ER and power-law graphs, we observe that σmarkov

asymptotically converges to σ as the average node degree 〈deg(v)〉 increases.
The implication of the threshold-drifting phenomenon is that the threshold σ may need

to be adjusted in practice when σ > 1/2 (i.e., for some small �σ using σmarkov = σ + �σ

instead). For the case σ < 1/2, adjustment is not necessary, because σ (> σmarkov) is
sufficient for governing the dynamics toward the all-secure equilibrium (i.e., active cyber
defense is effective for automatically cleaning up the network).

9. CONCLUSIONS

We have presented the first mathematical model and characterization of active cyber
defense dynamics. The analytic results give conditions under which (strategic) active cyber
defense is effective, and lead to practical insights that can be adopted for decision-making
and policy-making in real life.

Our study brings a range of interesting research problems: How should we ac-
commodate more sophisticated combat-power functions? How can we analyze a strategic
defender/attacker, including Bv(0) ∝ deg(v) and possibly other scenarios, in arbitrary net-
works (rather than in the generalized random graph model)? How can we analyze the native
Markov process model without using the dynamical system approximation (while noting
that the difficulty lies mainly in the nonlinearity of the combat-power functions)?

10. APPENDIX: PROOFS

10.1. Proof of Theorem 4.6

Proof. For (i), note that the equilibrium of (2.7) satisfies

frb

(
1

deg(v)

∑
u∈Nv

B∗
u

)
= B∗

v .

Consider a small perturbation B(0) = B∗
v + δB. If B∗

v = 1, then θv,rb(0) = 1, and Bv(t)
increases toward 1; if B∗

v = 0, then θv,rb(0) = 0, and Bv(t) decreases toward 0. In any
case, the sign of 1

deg(v)

∑
u∈Nv

Bu(t) − σ in a small time interval [0, t0) for some t0 is

unchanged. Let t1 be the maximum time at which all the signs of 1
deg(v)

∑
u∈Nv

Bu(t) − σ



52 XU ET AL.

are respectively the same as the signs of 1
deg(v)

∑
u∈Nv

Bu(0) −σ . If t1 is finite, then all signs
in a small time interval starting at time t1 are respectively the same as the signs at time t1.
This implies that t1 = +∞. So the sign of 1

deg(v)

∑
u∈Nv

Bu(t) − σ is the same as the sign

of 1
deg(v)

∑
u∈Nv

Bu(0) − σ for all v ∈ V , which implies that the system is asymptotically
stable.

To see that B̄∗ is also an equilibrium, consider the dynamic behavior of Rv(t) in (2.7),
namely dRv(t)/dt = θv,br(t) − Rv(t), where

θv,br(t) = fbr

(
1

deg(v)

∑
u∈Nv

Rv(t)

)
= 1 − frb

(
1

deg(v)

∑
u∈Nv

Bv(t)

)
.

Since Bv(t) + Rv(t) = 1 always holds for all v, B̄∗ is an equilibrium of (4.1) and thus an
equilibrium of (2.7).

To see the rates of convergence to the above equilibria, we note θv,br(t) = 0 or 1 for
all t and v ∈ V . Thus, (2.7) becomes either dBv(t)/dt = 1−Bv(t) or dBv(t)/dt = −Bv(t).
In any case, the convergence rate is O(exp(−t)).

For (ii), we first note that the definition of Type-I combat-power function implies
θv,rb ∈ {0, 1, σ }. Suppose at equilibrium B∗ that B∗

vk
= σ for vk ∈ V1 = {v1, . . . , vr},

where 1 ≤ k ≤ r . In other words, for every v ∈ V \ V1, we have B∗
v ∈ {0, 1}. For ε > 0, it

is always possible to find a sufficiently small δB from a set of positive Lebesgue measures
and impose a perturbation near B∗: B∗∗ = B∗ + δB such that ‖δB‖ < ε and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

deg(v)

∑
u∈Nv

B∗∗
u > σ if v ∈ V1 or B∗

v = 1,

1

deg(v)

∑
u∈Nv

B∗∗
u < σ if B∗

v = 0.

By treating B∗∗ as the initial security state at time t = 0, there exists a time interval [0, t0)
such that
� for every node v with B∗

v = σ , Bv(t) increases strictly monotonically toward 1 for
t ∈ [0, t0);

� for every node v with B∗
v = 1, we have Bv(t) = 1 for t ∈ [0, t0);

� for every node v with B∗
v = 0, Bv(t) does not decrease for t ∈ [0, t0).

Since for every v with B∗∗
v = σ , we have Bv(t) → 1 as t → ∞, it follows that B∗ with

B∗
v = σ for some v is unstable.

10.2. Proof of Theorem 4.7

Proof. From the condition limn→∞φ(n) > σ , for almost every sequence of φ(n) we can
pick some μ > μ′ > 0 such that φ(n) > σ + μ > σ + μ′ for sufficiently large n. Recall
the random variable χv(S):

χv(S) =
{

1, v ∈ S,

0, v /∈ S.



A STOCHASTIC MODEL OF ACTIVE CYBER DEFENSE DYNAMICS 53

Note that P(χv(S) = 1) = Bv(0). Let ζvu be a random variable indicating the link between
(from) node u and (to) node v, namely

ζvu =
{

1, (u, v) ∈ E(n),

0, (u, v) /∈ E(n).

According to (3.2), we have

P(ζvu = 1) = pvu(n) = dv(n)du(n)∑
k∈V (n) dk(n)

.

Since we assumed that the Bv(0)’s are independent of each other and also independent of
the linking of edges in G(n), ζvu and χu(S) are independent with respect to u. Our goal is
to estimate the probability of event Av as defined by

Av =
{

1

deg(v)

∑
u∈Nv

Bu(0) < σ

}
=
⎧⎨
⎩ 1

deg(v)

∑
u∈V (n)

Bu(0) · ζvu < σ

⎫⎬
⎭ ,

namely P(Av) = P(
∑

u∈V (n) ζvu · Bu(0) < σ · deg(v)).
Note that the random variables ζvu for all u ∈ V (n) are independent of each other.

The expectation is E(ζvu) = pvu(n), and the variance is Var(ζvu) = pvu(n)(1 − pvu(n)).
Because E(χu(S) · ζvu) = Bu(0)pvu(n) and the random variable has only two states, we
have

P (Av) = P

⎛
⎝ 1√∑

u∈V (n) Var(ζvu)B2
u(0)

∑
u∈V (n)

[ζvuBu(0) − E(ζvu)Bu(0)]

<
σ · deg(v) −∑u∈V (n) E(ζvu · χu(S))√∑

u∈V (n) Var(ζvu · χu(S))

⎞
⎠

= P

⎛
⎝ 1√∑

u∈V (n) Var(ζvu)B2
u(0)

∑
u∈V (n)

[ζvu · Bu(0) − Bu(0) · pvu(n)]

<
dv

sn,v

[
σ −

∑
u∈V (n) χu(S) · deg(u)∑

p∈V (n) deg(p)

]
+ σ

deg(v) − dv

sn,v

+ dv

sn,v

[∑
u∈V (n) χu(S) deg(u)∑

p∈V (n) deg(p)

∑
v∈V (n) dv −∑v∈V (n) deg(v)∑

v∈V (n) d(v)

+
∑

u∈V (n) deg(u)χu(S) −∑u∈V (n) duBu(0)∑
p∈V (n) dp

])
,

where s2
n,v is defined in (4.2). Since Var[ζv,uBu(0)] = Bu(0)2pvu(1 − pvu), we have∑

u∈V (n) Var[ζv,uBu(0)] = s2
n,v .
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Note that assumption (i) implies

lim
n→∞

1

s3
n,v

∑
u∈V (n)

{E ∣∣ζv,uBu(0) − E(ζv,uBu(0))
∣∣3} = lim

n→∞
qn,v

s3
n,v

= 0,

with qn,v defined in (4.3). This guarantees the Lyapunov condition in the central limit
theorem (with δ = 1) [10]. So as n → ∞,

1√
s2
n,v

∑
u∈V (n)

[ζv,uBu(0) − Bu(0)pvu] → N (0, 1) (10.1)

in distribution uniformly as n → ∞. We call this asymptotic normal random variable φv .
In addition, we observe that

σ
deg(v) − dv

sn,v

= σ
dv

sn,v

deg(v) − dv

dv

= σ
dv

sn,v

deg(v) − dv

wn,v

wn,v

dv

→ o(1)
dv

sn,v

,

(10.2)

with wn,v defined in (4.4), with probability 1. This is because the term (deg(v) − dv)/wn,v

converges to the standard Gaussian random variable owing to the Lyapunov central limit
theorem, where the Lyapunov condition is guaranteed by assumption (ii) with gn,v , which
is defined in (4.5), denoting the third-order moment of ζv,u for all u ∈ V (n), and because

wn,v

dv

≤ 1√
dv

→ 0

as n → ∞, owing to assumption (iii). Furthermore, we observe that

∑
v∈V (n) dv −∑v∈V (n) deg(v)∑

v∈V (n) d(v)
(10.3)

=
∑

v∈V (n) dv −∑v∈V (n) deg(v)√∑
v∈V (n) w

2
n,v

√∑
v∈V (n) w

2
n,v∑

v∈V (n) d(v)
→ 0

almost surely, because

∑
v∈V (n) dv −∑v∈V (n) deg(v)√∑

v∈V (n) w
2
n,v

converges to the standard Gaussian random variable, owing to the Lyapunov central limit
theorem, where the Lyapunov condition is guaranteed by assumption (iv), and

√∑
v∈V (n) w

2
n,v∑

v∈V (n) d(v)
≤ 1√∑

v∈V (n) dv

→ 0,
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owing to assumption (iii). We further observe that

∑
u∈V (n) deg(u)χu(S) −∑u∈V (n) duBu(0)∑

p∈V (n) dp

(10.4)

=
∑

u∈V (n) deg(u)χu(S) −∑u∈V (n) duBu(0)√∑
v∈v(n) s

2
n,v

√∑
v∈v(n) s

2
n,v∑

p∈V (n) dp

→ 0

almost surely, because

∑
u∈V (n) deg(u)χu(S) −∑u∈V (n) duBu(0)√∑

v∈v(n) s
2
n,v

converges to the standard Gaussian random variable, owing to the Lyapunov central limit
theorem, where the Lyapunov condition is guaranteed by assumption (v), and

√∑
v∈v(n) s

2
n,v∑

p∈V (n) dp

≤ 1√∑
p∈V (n) dp

,

owing to assumption (iii). Combining (10.1), (10.2), (10.3), and (10.4) with the fact

∑
u∈V (n) χu(S) deg(u)∑

p∈V (n) deg(p)
≤ 1,

we conclude that there exists a random variable εn,v that converges to zero uniformly with
probability 1 such that

P (Av) = P
(

1√∑
u∈V (n) Var(ζvu)B2

u(0)

∑
u∈V (n)

[ζvuBu(0) − E(ζvu)Bu(0)]

<
dv

sn,v

(
σ − φ(n) + εn,v

))
.

Finally, we observe that σ − φ(n) ≤ −μ holds with probability 1. This inequality,
together with the convergence rate in the central limit theorem [15], implies

∣∣P (Av | η ≥ σ + μ) − � (tn(v))
∣∣ ≤ C

qn,v/s
3
n,v

(1 + |tn(v)|3)
,

where tn(v) = −μ′ deg(v)/sn,v , where we note that μ′ < μ, for sufficiently large n, �(·) is
the probability function of the standard normal distribution, and C is a universal constant.

Since

� (tn(v)) = 2√
π

∫ tn(v)

−∞
exp

(
−y2

2

)
dy
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and ∫ x

−∞
exp
(−y2/2

)
dy ≤ exp

(−x2/2
)

−x
for all x ≤ 0,

we have

∑
v∈V (n)

� (tn(v)) <
2n√
π

exp
[−(minv tn(v))2/2

]
minv tn(v)

. (10.5)

Under assumption (iii), the limit superior of the logarithm of the right-hand side of (10.5)
becomes

limn→∞

{
ln

(
2√
π

)
+ ln(n) − [min

v
tn(v)]2/2 − ln[min

v
tn(v)]

}
= −∞.

This implies
∑

v∈V (n) � (tn(v)) → 0 as n → ∞. In addition, we observe that

∑
v∈V (n)

Cqn,v

1 + |tn,v|3 ≤ C
∑

v∈V (n)

qn,v

d3
v

≤ C
∑

v∈V (n)

1

d2
v

converges to zero, owing to assumption (vi).
Putting the above together, we have

lim
n→∞ P

( ⋃
v∈V (n)

Av

)
≤ limn→∞

∑
v∈V (n)

P (Av)

≤ limn→∞
∑

v∈V (n)

� (tn(v)) + Climn→∞
∑

v∈V (n)

Cqn,v

1 + |tn(v)|3

= 0.

Applying Theorem 4.2, we see that for each event not belonging to
⋃

v Av , we have
limt→∞ Bv(t) = 1 for all v ∈ V (n). This proves the first part of the theorem.

We can prove the second part analogously. This completes the proof.

10.3. Proof of Lemma 5.1

Proof. We only prove part (i), because part (ii) can be proved analogously. In order to
simplify the presentation, let Yv(t) = 1

deg(v)

∑
u∈Nv

Bu(t) be the average portion of v’s
secure neighbors at time t .

First, we need to show that Yv(t) > τ holds for all v ∈ V and t ≥ 0. For this purpose,
we let τ ∗ > τ be such that Yv(0) > τ ∗ holds for all v ∈ V , and we show that Yv(t) > τ ∗

holds for all t ≥ 0. We observe that Yv(t) > τ ∗ holds in a small time interval starting at
time t = 0, because of the continuity of the Bv(t) with respect to t . Let t1 be the first time
at which minv∈V Yv(t) = τ ∗, namely

t1 = inf{t : min
v∈V

Yv(t) > τ ∗ for all t ∈ [0, t) ∈ V }.

We show that t1 = +∞ as follows.
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Suppose t1 < +∞. We claim that minv∈V Yv(t) is nonincreasing in an interval starting
at time t1; otherwise, d(minv∈V Yv(t))/dt > 0 in a small interval starting at time t1, and
minv Yv(t) > τ ∗ in that small interval, which contradicts the definition of t1.

Let V ∗ = arg minv∈V Yv(t1). For each v′ ∈ V ∗, we have

d

dt

⎡
⎣ 1

deg(v′)

∑
u∈Nv′

Bu(t)

⎤
⎦
∣∣∣∣∣∣
t=t1

= 1

deg(v′)

∑
u∈Nv′

dBu(t)

dt

∣∣∣∣
t=t1

= 1

deg(v′)

∑
u∈Nv′

⎡
⎣frb

(
1

deg(u)

∑
w∈Nu

Bw(t1)

)
− Bu(t1)

⎤
⎦

≥ 1

deg(v′)

∑
u∈Nv′

frb(τ ∗) − τ ∗ = frb(τ ∗) − τ ∗ > 0,

owing to τ ∗ > τ . Hence minv Yv(t) is strictly increasing in an interval starting at time t1.
This contradicts that minv∈V Yv(t) is nonincreasing in an interval starting at time t1. The
contradiction was caused by the assumption t1 < +∞. Therefore, we have t1 = +∞.

Second, we need to show that minv∈V Bv(t) increases monotonically. Let Vt = {u :
Bu(t) = arg minv Bv(t)}, which may not be a singlet. For t = 0, the given initial condition

1
deg(v)

∑
u∈Nv

Bu(0) > τ for all v ∈ V implies that for each v∗ ∈ V0, we have

dBv∗ (t)

dt

∣∣∣∣
t=0

= frb

⎛
⎝ 1

deg(v∗)

∑
u∈Nv∗

Bu(0)

⎞
⎠− Bv∗ (0)

>
1

deg(v∗)

∑
u∈Nv∗

Bu(0) − Bv∗ (0) ≥ 0,

because frb(s) > s for s > τ . This means that minv Bv(t) is strictly increasing in a small
time interval starting at t = 0.

Let t2 be the maximum time that minv Bv(t) is strictly increasing, namely

t2 = sup
{
t : min

v
Bv(t) is strictly increasing in [0, t)

}
.

We now show that t2 = +∞. Suppose t2 < +∞, meaning that minv Bv(t) is not strictly
increasing at t = t2. However, for each v2 ∈ Vt2 , we have

dBv2 (t)

dt

∣∣∣∣
t=t2

= frb

⎛
⎝ 1

deg(v2)

∑
u∈Nv2

Bu(t2)

⎞
⎠− Bv2 (t2)

>
1

deg(v2)

∑
u∈Nv2

Bu(t2) − Bv2 (t2) ≥ 0,

because 1
deg(v2)

∑
u∈Nv2

Bu(t2) > τ and frb(s) > s for all s > τ . This implies that minv Bv(t)
is strictly increasing at t = t2, which contradicts the definition of t2. Therefore, t2 = +∞,
namely minv Bv(t) is strictly increasing for all t ≥ 0.
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10.4. Proof of Theorem 5.2

Proof. We prove the first part only, since the second part can be proved analogously. Lemma
5.1 shows that minv Bv(t) increases monotonically, meaning that limt→∞ minv Bv(t) ex-
ists. In order to show that limt→∞ Bv(t) = 1 for all v ∈ V , it suffices to show that
limt→∞ minv Bv(t) = 1. Suppose limt→∞ minv Bv(t) < 1. There are two cases, but both
cause contradictions, as we elaborate below. Therefore, we have limt→∞ minv Bv(t) = 1.

Case 1: τ < limt→∞ minv Bv(t) < 1. There exist τ < τ1 < τ2 < 1 and T > 0
such that τ1 ≤ minv Bv(t) ≤ τ2 for all t ≥ T . Since frb(x) − x > 0 for all x ∈ [τ1, τ2] and
frb is continuous, we can find some δ > 0 such that frb(x) − x > δ for all x ∈ [τ1, τ2]. Let
Vt be the index set of arg minv Bv(t). For each v∗ ∈ Vt , we have

dBv∗ (t)

dt
= frb

⎛
⎝ 1

deg(v∗)

∑
u∈Nv∗

Bu(t)

⎞
⎠− Bv∗ (t) ≥ frb(Bv∗(t)) − Bv∗ (t) > δ (10.6)

for all t > T . This leads to

min
v

Bv(t) > min
v

Bv(T ) + δ(t − T ).

Since minv Bv(T ) + δ(t − T ) → +∞ as t → ∞, this contradicts Bv(t) ≤ 1.
Case 2: limt→∞ minv Bv(t) ≤ τ . Let Vt be the index set of arg minv Bv(t). Since

1
deg(v)

∑
u∈Nv

Bu(t) > τ for all v and t , there exist T ′ > 0 and δ′ > 0 such that for each
v∗ ∈ Vt ,

frb

(
1

deg(v∗)

∑
u∈Nv∗

Bu(t)

)
− Bv∗ (t) > δ′

holds for all t > T ′. By the same argument as in Case 1, we can show that

lim
t→∞ min

v
Bv(t) = +∞,

which contradicts Bv(t) ≤ 1.

10.5. Proof of Theorem 5.4

Proof. Part (i) can be seen by considering any perturbation near each equilibrium B∗.
For these equilibria, we can use linearization to analyze the convergence rates. Let B(t) =
([Bv(t)]v∈V )�, let A be the adjacency matrix of G, D = diag

(
[deg(v)]nv=1

)
, 1 = [1, . . . , 1]�,

0 = [0, . . . , 0]�, let δB be the variation of B(t) near 1 or 0, let In denote the n-dimensional
identity matrix, let z = 1 indicate that we are considering the convergence rate of stable
equilibrium 1, and let z = 0 indicate that we are considering the convergence rate of stable
equilibrium 0. Then linearization leads to

dδB(t)

dt
=
[
f

′
rb(z)D−1A − In

]
δB.

The convergence rate is estimated by the largest real part of all eigenvalues of the matrix
f

′
rb(z)D−1A − In. Since the largest eigenvalue of D−1A equals 1, the convergence rate is

estimated as O(exp[(f
′
rb(z) − 1)t] for both z = 0 and z = 1.
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For proving part (ii), suppose at equilibrium B∗ that B∗
vk

= τ for vk ∈ V1 =
{v1, . . . , vr}, where 1 ≤ k ≤ r ≤ n. In other words, for every v ∈ V \ V1, we have
B∗

v ∈ {0, 1}. For ε > 0, it is always possible to find a sufficiently small δB from a set
of positive Lebesgue measures and impose a perturbation near B∗ while satisfying the
following: B∗∗ = B∗ + δB such that ‖δB‖ < ε and

1

deg(v)

∑
u∈Nv

B∗∗
u

{
> τ if B∗

v ≥ τ,

< τ if B∗
v < τ.

(10.7)

Let us treat B∗∗ as the initial security state at time t = 0. For every node v with B∗
v ≥ τ ,

we have

dBv(t)

dt

∣∣∣∣
t=0

= frb

(
1

deg(v)

∑
u∈Nv

B∗∗
u

)
− B∗

v >
1

deg(v)

∑
u∈Nv

B∗∗
u − B∗∗

v ≥ 0.

This means that there is a time interval [0, t0) in which for every node v with B∗
v ≥ τ , Bv(t)

is strictly monotonically increasing. For every node v with B∗
v < τ , we have

dBv(t)

dt

∣∣∣∣
t=0

= frb

(
1

deg(v)

∑
u∈Nv

B∗∗
u

)
− B∗

v <
1

deg(v)

∑
u∈Nv

B∗∗
u − B∗∗

v ≤ 0,

which means that the corresponding Bv(t)’s are strictly decreasing for a small time interval
t ∈ [0, t0). In summary, for any small perturbation with (10.7) as the initial security state,
Bv(t) leaves the equilibrium. Therefore, B∗ with B∗

v = τ for some v is unstable.
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