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Abstract In this article we define the notion of (p, δ)–Gromov hyperbolic space where we relax
the Gromov slimness condition to allow that not all, but a positive fraction of all triangles,
are δ–slim. Furthermore, we study their traffic congestion under geodesic routing. We also
construct a constant degree family of expanders with congestion �(n2) in contrast to random
regular graphs that have congestion O(n log3(n)).

1. INTRODUCTION

The purpose of this work is to continue the study of traffic congestion under geodesic
routing. By geodesic routing we mean that the path chosen to route the traffic between
the nodes is the shortest path. We assume there is a predefined, consistent way to break
ties so that the shortest path between any two nodes is uniquely defined. Our set up
throughout the article is as follows. Let {Gn}∞n=1 be a family of connected graphs where
Gn has n nodes. For each pair of nodes in Gn, consider a unit flow of traffic that trav-
els through the shortest path between nodes as previously discussed. Hence, the total
traffic flow in Gn is equal to n(n − 1)/2. Given a node v ∈ Gn we define Ln(v) as
the total flow passing through the node v. Let Mn be the maximum vertex flow across
the network

Mn := max
{
Ln(v) : v ∈ Gn

}
.

It is easy to see that for any graph n − 1 ≤ Mn ≤ n(n − 1)/2.
It was observed experimentally in [16], and proved formally in [1, 2], that if the

family is Gromov hyperbolic, then the maximum vertex congestion scales as �(n2). More
precisely, let {Gn}∞n=1 be an increasing sequence of finite simple graphs such that |Gn| = n,
and consider traffic flowing in these graphs that is uniform and geodesically routed between
all pairs of nodes. If this sequence is uniformly Gromov δ–hyperbolic, for some nonnegative
δ, then there is a sequence of nodes {xn}∞n=1, with xn ∈ Gn, such that the total traffic passing
through xn is greater than cn2 for some positive constant c independent of n. These highly
congested nodes are called the core of the graph. For more details and related results
see [3–15].
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In this work we extend the previously discussed work and study what happens with
the traffic congestion if we relax the slimness condition so that not all, but a fraction of all
the triangles, are δ–slim. More precisely, we say that a metric (X, d) is (p, δ)–hyperbolic if
for at least a p fraction of the 3–tuples (u, v,w) ∈ X × X × X, the geodesic triangle �uvw

is δ–slim. The case p equals 1 corresponds to the classic Gromov δ–hyperbolic space. We
show that the congestion in these graphs scales as �(p2n2/D2

n), where Dn is the diameter
of Gn.

Another important family of graphs are expanders. In graph theory, an expander
graph is a sparse graph that has strong connectivity properties. Expander constructions
have spawned research in pure and applied mathematics, with several applications to
complexity theory, design of robust computer networks, and the theory of error-correcting
codes. It is well known that random regular graphs are a large family of expanders. It was
proved in [17] that random d–regular graphs have maximum vertex congestion scaling as
O(n log3

d−1(n)). Therefore, it is a natural question to ask if expanders always have low
congestion under geodesic routing. In Section 4, we show that this is not the case. More
precisely, we construct a family of expanders {Gn}∞n=1 with maximum vertex congestion
�(n2).

2. PRELIMINARIES

2.1. Hyperbolic Metric Spaces

In this section we review the notion of Gromov δ–hyperbolic space. There are many
equivalent definitions of Gromov hyperbolicity but the one we take as our definition is the
property that triangles are slim.

Definition 2.1. Let δ. be a nonnegative number, a geodesic triangle in a metric space X

is said to be δ–slim if each of its sides is contained in the δ–neighborhood of the union of
the other two sides. A geodesic space X is said to be δ–hyperbolic if every triangle in X is
δ–slim. A space is said to be hyperbolic if it is δ-hyperbolic for some nonnegative δ.

It is easy to see that any tree is 0-hyperbolic. Other examples of hyperbolic spaces include
finite graphs, the fundamental group of a surface of genus greater than or equal to 2, the
classical hyperbolic space, and any regular tessellation of the hyperbolic space (i.e., infinite
planar graphs with uniform degree q and p–gons as faces with (p − 2)(q − 2) > 4).

2.2. Expanders

We say that a family of graphs {Gn}∞n=1 is a c–expander family if the edge expansion
(also an isoperimetric number or Cheeger constant) h(Gn) ≥ c where

h(Gn) = min

{ |∂S|
|S| : S ⊂ Gn with 1 ≤ |S| ≤ |Gn|/2

}

and ∂S is the edge boundary of S, i.e., the set of edges with exactly one endpoint in S.
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3. CONGESTION ON (p, δ)–HYPERBOLIC GRAPHS

In this section we generalize the definition of Gromov hyperbolic spaces to include
spaces where not all, but a fixed proportion of the triangles in the metric space, are slim.
Furthermore, we study the traffic characteristics in these graphs.

Definition 3.1. ( p, δ)-hyperbolic We say that a metric space (X, d) is (p, δ)–hyperbolic
if, for at least a p fraction of the 3–tuples (u, v,w) ∈ X × X × X, the geodesic triangle
�uvw is δ–slim.

A classical δ–hyperbolic space corresponds to p equals one.

Theorem 3.2. Let (X, d) be a (p, δ)-hyperbolic metric space of size n. Let D be its
diameter and M = max {|B(u, δ)| : u ∈ X} be the maximum number of points in a ball of
radius δ. Then there exists a point a ∈ X such that the traffic passing through a is at least
p2n2/(D2M3).

Before proving the theorem, we prove the following useful lemma.

Lemma 3.3. Let G = (U,V,E) be a bipartite graph such that |U | = |V | = n and
|E| ≥ pn2. The edges of G are colored in such a way that every vertex in U ∪V is incident
to at most t colors (u is incident to a color c if u is incident to an edge with color c). Then,
there must be a color that is used by at least (pn/t)2 edges in E.

Proof. Define three random variables A,B, and C as follows. We randomly select an edge
(u, v) ∈ E and let A = u,B = v and C be the color of the edge (u, v).

Because h(A) ≤ log n, h(B) ≤ log n and h(A,B) ≥ log(pn2) = 2 log n − log(1/p),
we have I (A; B) = h(A) + h(B) − h(A,B) ≤ log(1/p). (h is the entropy function and
I (A,B) is the mutual information between A and B.) Moreover, if we know A = u, then
there can be at most t possible colors for C. Thus, we have h(C|A) ≤ log t . Similarly,
h(C|B) ≤ log t . Hence,

h(C|B) ≥ I (C; A|B) = h(A|B) − h(A|C,B) = h(A) − I (A; B) − h(A|C,B)

≥ h(A) − I (A; B) − h(A|C) = I (A; C) − I (A; B).

Thus, h(C) = h(C|A) + I (A; C) ≤ h(C|A) + h(C|B) + I (A; B) ≤ log(t2/p).
Notice that |E| ≥ pn2. The inequality implies that there must be a color that is used

by at least pn2/(t2/p) = (pn/t)2 edges.

Now, we proceed to prove the theorem. For any 3 points u, v,w ∈ X, let cuvw be
the barycenter of the triangle �uvw. By a simple counting argument, there must be a point
w ∈ X such that for at least p fraction of the ordered pairs (u, v) ∈ X ×X, �uvw is δ–slim.
We fix such a point w from now on. Define G = (U = X,V = X,E) as follows. For any
two vertices u ∈ U, v ∈ V , (u, v) ∈ E iff �uvw is δ–slim. The color of (u, v) ∈ E is cuvw.
Then, |E| ≥ pn2. Moreover, if c is the color of (u, v), then c is in the δ-neighborhood of
[uw]. Thus, any vertex u can be incident to at most DM colors. By Lemma 3.3, there must
be a color c that is used by at least p2n2/(DM)2 edges in E. Notice that for each such edge
(u, v) ∈ E, c is in the δ-neighborhood of [uv]. Thus, [uv] will contain a vertex in the ball
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B(c, δ). Since |B(c, δ)| ≤ M , for some vertex c′ ∈ B(c, δ) and p2n2/(D2M3), different
ordered pairs (u, v) ∈ X × X, [uv] contain c′.

4. TRAFFIC ON EXPANDERS

In this section we construct a constant degree family of expanders with �(n2) conges-
tion. This result is in contrast to random regular graphs that have congestion O(n log3(n))
(as shown in [17]).

Theorem 4.1. There exists a family {Gn}∞n=1 of constant-degree expanders with congestion
�(n2).

4.1. Construction of the Expander Graph

For an even integer h, let T be a tree of depth h defined as follows. Each node in
depth 0 to h/2 − 1 of T has 3 children, and each node in depth h/2 to h − 1 has 2 children

(root has depth 0 and leaves have depth h). Thus, T has exactly n := 3h/2 × 2h/2 = √
6

h

leaves. We use L(T ) to denote the set of leaves of T . Define λ(d) to be the number of leaves
in a subtree of T rooted at some vertex of depth h − d. Then, we have

λ(d) =
{

2d 0 ≤ d ≤ h/2

2h/23d−h/2 h/2 < d ≤ h
.

Construct a graph G as follows. (See Figure 1.) Let A be a degree-3 expander of size
2n. Let TL and TR be two copies of the tree T . We create a random matching between the 2n

leaves of TL and TR and the vertices of A. We add a matching edge between each matched
pair of vertices. We also add a vertex v∗ that is connected to the roots of TL and TR. Finally,
we scale matching edges and expander edges by a factor of c (i.e., replace those edges with
paths of length c) for some constant even number c to be determined later.

Proposition 4.1. The graph G is an expander of degree at most 4 and size �(n).

Proof. Because replacing edges with paths of length c decreases the expansion by a factor
of only c, we need to consider only the graph obtained before the scaling operation. Let
G′ be that graph. For the simplicity of the notation, let T ′ be the tree rooted at v∗ with 2
sub-trees TL and TR and L(T ′) = L(TL) ∪ L(TR). We also use I (T ′) to denote the set of
inner vertices of T ′.

Assume that G′ is not an 0.01α-expander. Then, let S ⊆ V (G′) be a set of size at
most

∣∣V (G′)
∣∣ /2 such that EG′(S, V (G′) \ S) < 0.01α |S|.

We notice the following two facts:

1. If
∣∣S ∩ I (T ′)

∣∣ ≥ ∣∣S ∩ L(T ′)
∣∣ + s then there must be at least s edges between S ∩ V (T ′)

and V (T ′) \ S.
2. If

∣∣ ∣∣S ∩ L(T ′)
∣∣−|S ∩ V (A)| ∣∣ ≥ s then there must be at least s matching edges between

S and V (G′) \ S.
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Figure 1 Construction of the expander G. There are two trees TL and TR, each with n leaves, a root node v∗,
and an expander A with 2n nodes. We connect v∗ to the two roots of TL and TR. We create a random matching
between the 2n leaves of TL and TR and the 2n vertices of A; there is a path of length c connecting each pair in
the matching. We also replace edges of A with paths of length c.

By the first fact, we can assume
∣∣S ∩ I (T ′)

∣∣ ≤ 0.6|S|. Then∣∣S ∩ L(T ′)
∣∣ + |S ∩ V (A)| ≥ 0.4|S|.

By the second fact, we have |S ∩ V (A)| ≥ 0.15|S|. If |S ∩ V (A)| ≤ |V (A)| /2 then
EG′(S, V (G′) \ S) ≥ 0.15α|S|. Thus, we have |S ∩ V (A)| ≥ |V (A)| /2. If |S ∩ V (A)| ≤
0.9 |V (A)|, then

EG′(S, V (G′) \ S) ≥ α |V (A) \ S| ≥ 0.1

0.9
α |S ∩ V (A)| ≥ α|S|/60.

Thus, we have |S ∩ V (A)| ≥ 0.9 |V (A)|, which implies
∣∣S ∩ L(T ′)

∣∣ ≥ 0.9 |V (A)| − 0.1|S|
by the second fact. Then |S| ≥ 1.8 |V (A)| − 0.1|S|, implying that

|S| ≥ 1.6 |V (A)| ≥ 1.6

3

∣∣V (G′)
∣∣ > 0.5

∣∣V (G′)
∣∣ ,

Which, is a contradiction.

4.2. Proof of the High Congestion in G

Consider the set L(TL) × L(TR) of n2 pairs. We show that for a constant fraction of
pairs (u, v) in this set, the shortest path connecting u and v will contain v∗. It is easy to see
that for every (u, v) ∈ L(TL) × L(TR), there is a path of length 2h + 2 connecting u and v,
which goes through v∗.

Focus on the graph G \ v∗. We are interested in the number of pairs (u, v) ∈ L(TL) ×
L(TR) such that dG\v∗ (u, v) ≤ 2h + 2. Fix a vertex u ∈ L(TL) from now on. Consider the
set P of simple paths starting at u and ending at L(TR). We say a path P ∈ P has rank r if
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it enters and leaves the expander r times. Notice that we always have r ≥ 1, since we must
use the expander A from u to L(TR).

For a path P of rank r , we define the pattern of P , denoted by ptn(P ), as a sequence
t = (t1, t2, . . . , t2r+1) of 2r + 1 nonnegative integers as follows. For 1 ≤ i ≤ r , ct2i is
the length of the subpath of P correspondent to the ith traversal of P in the expander A.
(Recall that we replaced each expander edge with a path of length c.) The path P will
contain r + 1 subpaths in the two copies of T (the first and/or the last subpath might
have length 0). Let 2t2i−1 be the length of the ith subpath in the tree. Notice that P can
enter and leave the trees only through leaves, and thus, the lengths of those subpaths must
be even. If some path P ∈ P has ptn(P ) = (t1, t2, . . . , t2r+1), then the length of P is
exactly len(t[2r+1]) := 2

∑r
i=0 t2i+1 + c

∑r
i=1(t2i + 2), where t[2r+1] denotes the sequence

(t1, t2, . . . , t2r+1). Notice that the c(t2i + 2) term in the definition of len includes the 2c

edges replaced by the 2 matching edges through which the path enters and leaves the
expander.

We call a sequence (t1, t2, . . . , t2r+1) of nonnegative integers a valid pattern of rank
r if len(t[2r+1]) ≤ 2h + 2.

Lemma 4.2. The number of paths P ∈ P with ptn(P ) = t[2r+1] is at most

(
3

2

)r
[

r∏
i=1

λ(t2i−1)2t2i

]
λ(t2r+1).

Proof. For any leaf v in T , we have at most λ(t) possible simple paths of length 2t in T

that start at v and end at L(T ). For a degree-3 graph (in particular, a degree-3 expander),
we have at most 3

2 × 2t simple paths that start at any fixed vertex. From a leaf in TL or TR,
we have only one way to enter the expander. Similarly, we have only one way to leave the
expander from a vertex in the expander. Thus, the total number of simple paths of pattern
t[2r+1] is at most

λ(t1)

(
3

2
2t2

)
λ(t3)

(
3

2
2t4

)
· · · λ(t2r+1) =

(
3

2

)r
[

r∏
i=1

λ(t2i−1)2t2i

]
λ(t2r+1).

We fix the rank r ≥ 1 from now on. For some integer � ∈ [0, r], suppose t[2�] is a
prefix of some valid pattern of rank r . Define W (t[2�]) to be the maximum t2�+1 such that
t[2�+1] is a prefix of some valid pattern of rank r . That is,

W
(
t[2�]

) =
⌊

2h + 2 − 2
∑�

i=1 t2i−1 − c
∑�

i=1(t2i + 2) − 2c(r − �)

2

⌋
.

Similarly, we define

W
(
t[2�−1]

) =
⌊

2h + 2 − 2
∑�

i=1 t2i−1 − c
∑�−1

i=1 (t2i + 2) − 2c(r − �)

c

⌋
− 2.
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For some prefix t[2�] of some valid pattern of rank r , let Pt[2�] be the set of paths P ∈ P
of rank r such that t[2�] is a prefix of ptn(P ). We prove that

Lemma 4.3. For any 0 ≤ � ≤ r , we have

∣∣Pt[2�]

∣∣ ≤ 2Cr−�

(
3

2

)� �∏
i=1

[
λ(t2i−1)2t2i

] ×
√

6
W(t[2�])

for some large enough constant C.

Proof. For � = r , Lemma 4.2 implies

∣∣Pt[2r]

∣∣ ≤
W(t[2r])∑
t2r+1=0

(
3

2

)r r∏
i=1

[
λ(t2i−1)2t2i

]
λ(t2r+1)

=
(

3

2

)r r∏
i=1

[
λ(t2i−1)2t2i

] W(t[2r])∑
t2r+1=0

λ(t2r+1)

≤ 2

(
3

2

)r r∏
i=1

[
λ(t2i−1)2t2i

] ×
√

6
W(t[2r])

.

The last inequality holds because
∑W(t[2r])

t2r+1=0 λ(t2r+1) ≤ 2λ
(
W

(
t[2r]

)) ≤ 2
√

6
W(t[2r]).

Now, suppose the lemma holds for some 1 ≤ � ≤ r and we shall prove that it holds
for � − 1. By the induction hypothesis, we have

∣∣Pt[2�−2]

∣∣ ≤
W(t[2�−2])∑
t2�−1=0

W(t[2�−1])∑
t2�=0

2Cr−�

(
3

2

)� �∏
i=1

[
λ(t2i−1)2t2i

] ×
√

6
W(t[2�])

= 2Cr−�

(
3

2

)� �−1∏
i=1

[
λ(t2i−1)2t2i

] W(t[2�−2])∑
t2�−1=0

λ(t2�−1)

W(t[2�−1])∑
t2�=0

2t2�

√
6

W(t[2�])
.

It is sufficient to prove that
∑W(t[2�−2])

t2�−1=0 λ(t2�−1)
∑W(t[2�−1])

t2�=0 2t2�

√
6

W(t[2�]) ≤ 2C
3

√
6

W(t[2�−2]).

LHS ≤ 1

1 − 2/
√

6
c/2

W(t[2�−2])∑
t2�−1=0

λ(t2�−1)
√

6
W(t[2�−1]�(0))

(4.1)

≤ 1

1 − 2/
√

6
c/2

⎛
⎝√

6
W(t[2�−2]�(0,0))

1 − √
2/3

+ λ
(
W

(
t[2�−2]

))
1 − √

2/3

⎞
⎠ (4.2)

≤ 1

1 − 2/
√

6
c/2

2

1 − √
2/3

√
6

W(t[2�−2])
, (4.3)

where t[2�−1] � (4.1) denotes the sequence obtained by concatenating the two sequences
t[2�−1] and (4.1).
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We explain Inequalities (4.1), (4.2), and (4.3) one by one. Focus on the term Q =
2t2�

√
6

W(t[2�]). If we increase t2� by 1, then W
(
t[2�]

)
will decrease by exactly c/2, by the

definition of W . (We assume c is an even number.) Thus, Q will decrease by a factor of√
6

c/2
/2. By the rule of the geometric sum,

W(t[2�−1])∑
t2�=0

Q ≤ Q|t2�=0

1 − 2/
√

6
c/2 =

√
6

W(t[2�−1]�(0))

1 − 2/
√

6
c/2 ,

implying Inequality (4.1).

Now focus on the term Q = λ(t2�−1)
√

6
W(t[2�−1]�(0))

. If we increase t2�−1 by 1, then
W

(
t[2�−1] � (0)

)
will decrease by 1. Then, Q will either decrease by a factor of

√
6/2 =√

3/2, or increase by a factor of 3/
√

6 = √
3/2, depending on whether t2�−1 ≤ h/2. We

can split the sum
∑W (t[2�−2])

t2�−1=0 Q into 2 sums at the point h/2 if necessary. Again, using the
geometric sum, we have

W (t[2�−2])∑
t2�−1=0

Q ≤ Q|t2�−1=0

1 − √
2/3

+ Q|t2�−1=W (t[2�−2])

1 − √
2/3

,

implying Inequality (4.2).
Inequality (4.3) follows from the fact that W

(
t[2�−2] � (0, 0)

) = W
(
t[2�−2]

)
and

λ(t) ≤ √
6

t
for any t ∈ [0, h].

This finishes the proof if we let C = 3(
1 − 2/

√
6

c/2
) (

1 − √
2/3

) .

Notice that W (∅) = ⌊
2h+2−2rc

2

⌋ = h + 1 − rc for an even integer c. Thus,

|P∅| ≤ 2Cr
√

6
h+1−rc = 2

√
6

(
C√
6

c

)r √
6

h = 2
√

6

(
C√
6

c

)r

n.

P∅ is essentially the set of paths in P with rank r . For a large enough c, we have
C <

√
6

c
. Summing up over all r ≥ 1, we have that the total number of paths in P is at

most

2
√

6C/
√

6
c

1 − C/
√

6
c n.

For a large enough constant c (say, c = 6), the number will be at most n/2.
Then, consider the graph G. We know there is a path of length 2h + 2 from u to v

via v∗ for any vertex v ∈ L(TR). Thus, for a fixed vertex u ∈ L(TL), there are at least n/2
vertices v ∈ L(TR) such that the minimum length between u and v contains v∗. Therefore,
there are n2/2 pairs (u, v) such that the shortest path between u and v contain v∗.
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