
Internet Mathematics, 11:528–554, 2015
Copyright © Taylor & Francis Group, LLC
ISSN: 1542-7951 print/1944-9488 online
DOI: 10.1080/15427951.2015.1022626

A NEW RANDOM GRAPH MODEL WITH
SELF-OPTIMIZING NODES: CONNECTIVITY AND
DIAMETER

Richard J. La and Maya Kabkab
Department of Electrical & Computer Engineering (ECE) and the Institute
for Systems Research (ISR), University of Maryland, College Park, Maryland

Abstract We introduce a new random graph model. In our model, n, n ≥ 2, vertices choose
a subset of potential edges by considering the (estimated) benefits or utilities of the edges.
More precisely, each vertex selects k, k ≥ 1, incident edges it wishes to set up, and an
undirected edge between two vertices is present in the graph if and only if both of the end
vertices choose the edge. First, we examine the scaling law of the smallest k needed for graph
connectivity with increasing n and prove that it is�(log(n)). Second, we study the diameter of
the random graph and demonstrate that, under certain conditions on k, the diameter is close to
log(n)/ log(log(n)) with high probability. In addition, as a byproduct of our findings, we show
that, for all sufficiently large n, if k > β� log(n), where β� ≈ 2.4626, there exists a connected
Erdös–Rényi random graph that is embedded in our random graph, with high probability.

1. INTRODUCTION

In recent years, there has been a renewed interest in various random graph models,
some of which is driven by research activities on network formation or generation, e.g.,
markets and social networks [18, 38]. Some of these random graph models include the
famous Erdös–Rényi random graphs [10], random intersection graphs [8], random graphs
with hidden variables [9,12], random threshold graphs [35], and random geometric graphs
[3, 39], just to name a few.

These random graphs are constructed in very different manners. Each model has
a unique mechanism by which edges are selected in the graph. Also, the edge selection
mechanisms often make use of attributes or variables assigned to each vertex and lead to
different correlations in edges and distributions of random graphs. Short descriptions of
these random graph models and some of their applications are provided in Section 3.

Although in some cases associating attributes with vertices makes sense, there are
other cases for which it is more natural to associate attributes with the edges. For example, in
a (multihop) wireless network, the importance of an edge or link (in the network) might be
dependent on how much traffic is carried using the link. Consequently, even the importance
of two links incident on the same node can vary drastically, depending on how traffic is
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routed in the network. In such cases, the importance of an edge is not determined by the
end vertices. Instead, it is shaped by how the edge is used or what the edge is used for, and
the importance of a vertex is, in turn, set by the importance of edges incident on the vertex.

Our new random graph model aims to take a step toward modeling such situations
and assigns attributes to (potential) edges between vertices (as opposed to the vertices
themselves). Moreover, it captures, to some extent, the strategic or self-optimizing nature
of vertices that we expect in many applications; we interpret the attributes of the edges as
their benefits or utilities, and each vertex tries to select a subset of incident edges with the
largest benefits.

Such situations could arise naturally; for instance, in (cooperative) distributed systems
supported by wireless networks (e.g., coordinated motion control of autonomous mobile
agents), in which individual agents attempt to take actions they believe to be most beneficial
based on locally available information [4]. This requires that each agent identify a subset of
other agents with which it wishes to coordinate actions or exchange information in order to
optimize the overall system performance. Here, the edges may represent physical/wireless
links or indicate operational relations.

Unfortunately, in many cases, setting up edges and/or exchanging information is not
free and incurs nonzero communication and computational costs, e.g., energy consumption
and overhead. In these cases, the agents ought to select only important edges and should
not choose their neighbors at random, especially when communication resources are con-
strained [28, 29]. To this end, the agents should first gauge the benefit of each potential
edge, which may be estimated based on previous interactions with other agents or available
prior information, and pick the edges with the highest benefits.

In addition, in some cases, the number of edges agents can select or wish to set
up might be limited for several possible reasons. As an example, if maintaining edges
requires exchanging control information with a large number of neighbors, the resulting
overhead could be prohibitive. Moreover, high degrees of nodes in a large dense network
can also complicate the operation of network protocols and necessitate a considerable
amount of state information at the nodes, with only marginal gains in performance. For
instance, proactive or table-driven routing protocols for multihop wireless networks strive
to maintain up-to-date topological information of the network [13, 40]. Because even a
small change in network topology triggers flooding of an update message, the overhead
for keeping up-to-date topological information increases rapidly with node degrees in a
large network. Also, the computation of optimal routes will become more challenging
as the number of available paths grows. Thus, in some cases it might be desirable to
limit the degrees of nodes so long as the performance does not degrade significantly in
doing so.

We consider simple cases in this study, in which edges are selected only once by the
vertices. However, in some applications, edge selections may be repeated over time and
the edge set is updated dynamically based on current information. This can happen, for
example, when the benefits or utilities of the edges are time varying (e.g., multihop wireless
networks) or while the vertices are in the process of discovering and learning the benefits
of the edges.

Another line of research related to network formation can be found in the literature on
game-theoretic or strategic network formation (e.g., [25, 31] and references therein). Most
of these studies model the problem of network formation as a game among the vertices, in
which each vertex is a rational player and is interested in maximizing its payoff, e.g., the
number of reachable vertices discounted according to their hop distances.
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These game theoretic models typically assume that the vertices have both the nec-
essary knowledge and computational capability to compute their payoffs as a function of
strategy profile, i.e., the set of actions chosen by the vertices. This payoff computation
often requires global knowledge, which might not be available to the vertices in many
applications. Moreover, due to the stringent assumptions on the availability of global in-
formation and full rationality, the networks predicted at equilibria are often very simple
(e.g., complete topology, star topology, or disconnected network, comprising very small
components with one or two vertices). The final equilibrium network is typically shaped
by the costs of establishing edges between vertices.

In contrast, our model allows us to capture the strategic nature of the vertices to a
certain extent without assuming their full rationality or the availability of global information
at their disposal. This is because the vertices are assumed to base their selections only on
the estimated benefits of potential edges, which do not depend on other edges selected by
vertices, and choose the edges that they believe to be most helpful.

Suppose that there are n, n ≥ 2, vertices in the graph and each vertex is allowed to
choose k, 1 ≤ k ≤ n− 1, potential edges that provide the largest estimated benefits. In our
model, however, setting up an edge requires mutual consent between its two end vertices;
when only one of the end vertices chooses the edge, the edge is not set up. The questions
we are interested in exploring are the following:

Q1: How large should k be as a function of n in order for the graph to be connected (with
high probability)?

Q2: When the graph is connected, what is its diameter?

To offer a partial answer to these questions, we prove the following main results: for
large n,

F1. if k > β� log(n), where β� ≈ 2.4626, the graph is connected with high probability
(whp);

F2. if k < 0.5 log(n), the graph contains at least one isolated node (i.e., a node with no
neighbor), and is not connected whp; and

F3. when k is of the order log(n) and is larger than β� log(n) (so that the graph is connected
whp), the diameter of the graph is close to log(n)/ log(log(n)).

In the process of proving the first result, we also bring to light the following interesting fact:
under the condition k > β� log(n), in spite of their seemingly disparate constructions, we
can find an Erdös–Rényi random graph that is embedded in our random graph and is also
connected whp. This suggests a somewhat surprising connection between the Erdös–Rényi
random graph model and our random graph model.

The rest of this article is organized as follows: Section 2 describes the random graph
model we propose. We briefly discuss several existing random graph models and point
out key differences between them and our model in Section 3. Section 4 defines the graph
connectivity and the diameter of a graph and formally states the questions of interest to
us. We present the main results in Section 5, followed by numerical results in Section 6.
We compare our findings on the proposed graph model against the properties of existing
random graph models in Section 7. Throughout the article, we assume that all random
variables (rvs) are defined on a common probability space

(
�,F ,P).
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2. A NEW RANDOM GRAPH MODEL

For each n ∈ IN+ := {2, 3, . . .}, let V (n) = {1, 2, . . . , n} be the set of n nodes or
vertices.1 We assume that all edges between nodes are undirected in our model and denote
the undirected edge between nodes i and j (i �= j ) by (i, j ) = (j, i). For fixed n ∈ IN+,
a subset of n(n − 1)/2 possible undirected edges is chosen through the following edge
selection process.

1. Edge values – For every pair of distinct nodes, say i, j ∈ V (n) (i �= j ), there is a value
Vi,j associated with the edge between them. This edge value Vi,j is used to model the
benefit that node i anticipates from having an edge with node j or the overall importance
of the edge to the network itself or a system running on the network.

We assume that edge values are symmetric, i.e.,Vi,j = Vj,i .2 Although this may not
be true in some cases, we believe that this a reasonable assumption in many applications,
including cooperative distributed systems; in such systems, the value of an edge should
signify to both of its end vertices its utility to the overall system performance.

The values of n(n−1)/2 possible edges are modeled as n(n−1)/2 independent and
identically distributed (i.i.d.) rvs with a common continuous distribution F . Although
this is clearly a simplification of a complicated reality, we make this assumption to
facilitate our analysis as a first step. Moreover, as it will be made clear, even under
this simplifying assumption, the analysis is still nontrivial, in part because of complex
correlations in edge selections, and we leave the relaxation of this i.i.d assumption as
future work.

2. Edge selection – Based on realized edge values {Vi,j | i, j ∈ V (n), i �= j}, each node
i ∈ V (n) selects k incident edges with the k largest values. Denote the set of edges chosen
by node i by E(n)

i ⊂ {(i, j ) | j ∈ V (n) \ {i}}. The edge set E (n) of the graph is then given
by

E (n) :=
{

(i, j ) | (i, j ) ∈ E(n)
i ∩ E(n)

j

}
⊆ V (n) × V (n). (2.1)

It is clear from the definition in (2.1) that an edge is in E (n) if and only if both of its end
nodes pick the edge. In other words, we consider only those scenarios where mutual
consent of the end nodes is needed for an edge to be present in the graph.

When (i, j ) ∈ E (n), we say that nodes i and j are neighbors and denote this relation by
i ↔ j . Thus, when node i chooses an edge (i, j ) ∈ E(n)

i , it expresses its desire to be node
j ’s neighbor, and we say that node i picks node j (as a potential neighbor).

The pair (V (n), E (n)) gives rise to a random graph because the edge set E (n) is a
random set. We denote the random graph (V (n), E (n)) by G (n, k). Let us first point out a few
observations regarding G (n, k):

1Throughout the rest of the article, we use the words nodes and vertices interchangeably.
2In more general cases, however, edges may be directed, and edge values Vi,j and Vj,i may be

correlated, but not necessarily identical.
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O-1. Beacuse each node is allowed to choose only k potential neighbors, a node degree
is upper bounded by k. The exact node degree distribution is, however, difficult to
compute.

O-2. As the selection of potential neighbors is carried out using symmetric edge values,
there are correlations in the selection ofE(n)

i , i ∈ V (n). For instance, when k < n−1,
given {(i, j ) ∈ E(n)

i }, the conditional probability of {(i, j ) ∈ E(n)
j } is larger than the

prior probability, i.e.,

P
[
(i, j ) ∈ E(n)

j

∣∣ (i, j ) ∈ E(n)
i

]
> P

[
(i, j ) ∈ E(n)

j

]
.

The reason for this inequality is that, conditioned on the event {(i, j ) ∈ E
(n)
i }, the

conditional distribution of Vi,j first-order stochastically dominates the prior distribu-
tion of Vi,j [41]. In other words, P [Vi,j ≥ v | (i, j ) ∈ E

(n)
i ] ≥ P [Vi,j ≥ v] for all

v ∈ IR, and the inequality is strict for some values of v ∈ IR. This is a consequence of
the assumption that nodes choose edges with the largest edge values, and Vi,j is one
of the k largest values among n− 1 edge values seen by node i.

O-3. The choice of edge value distribution F is not important in that the distribution of
G (n, k) and our findings do not depend on the distribution F . This is because only
the ordering of edge values matters as each node selects k edges with the k largest
edge values among n−1 possible incident edges. In order to see this, note that, given
any two continuous distributions F1 and F2, we can construct a set of i.i.d. rvs with
distribution F1, using another set of i.i.d. rvs with distribution F2 in such a way that
the ordering of the rvs is preserved with probability one (w.p.1). This can be done, for
instance, with help of the probability integral transform and quantile functions [2].
The preservation of the ordering among the rvs in turn implies that, for any fixed
ordering of the rvs, the probability that we will observe the given ordering of the rvs is
the same for both F1 and F2. As a result, the distribution of G (n, k) is not dependent
on the edge value distribution F as long as it is continuous. We will make use of this
observation in the proofs of our main results.

3. RELATED EXISTING RANDOM GRAPH MODELS

In this section we briefly summarize some well-known random graph models, and
highlight the differences between these models and our model delineated in Section 2.

1. Erdös–Rényi random graphs: One of earliest random graph models is the Erdös–Rényi
random graph model. In the so-calledG(n, p) model, which is also known as the Gilbert
model [24], there are n vertices in the graph, and each undirected edge between two
vertices i and j is present in the edge set E with probability p, independently of other
edges [10]. Because each undirected edge is added with probability p independently, a
node degree has a binomial(n−1, p) distribution. Thus, not only is the degree distribution
in the Erdös–Rényi random graphs quite different from that of our random graphs, but
also the Erdös–Rényi random graphs do not model any correlations among the edges.

Another related Erdös–Rényi random graph model is known as G(n,m) random
graph model. In this model, there are n vertices as before. However, instead of adding
each undirected edge with probability p, a set of m edges is selected at random. More
precisely, each subset ofm edges is equally likely to be selected from the set containing
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(
n(n−1)/2

m

)
subsets ofm edges out of n(n− 1)/2 possible edges. However, it is shown that

when m ≈ n(n− 1) · p/2, G(n, p) and G(n,m) behave similarly.

2. Randomm-orientable graphs: A randomm-orientable graph, also called a random k-out
graph, is obtained by allowing each node to choose a set of m neighbors with equal
probability of 1/

(
n−1
m

)
, independently of each other [23]. A pair of nodes i and j have

an undirected edge between them if either node chooses the other node as a neighbor.
Even though each node chooses a fixed number of (potential) neighbors in both a

randomm-orientable graph and our graph, there are two key differences. First, a random
m-orientable graph requires only one of the end nodes to choose an edge in order for
the edge to be present in the graph. In contrast, in our graph, it is necessary for both end
nodes to choose the edge. Second, the selections of neighbors are mutually independent
in a randomm-orientable graph, whereas they are correlated through edge values in our
graph.

3. Random intersection graphs: In the simplest random intersection graph model, denoted
by G(n,m, k), there are n vertices and each vertex is assigned k distinct colors at
random from a set ofm colors [8]. The set of k colors assigned to each vertex is selected
independently of those of other vertices. There exists an undirected edge between two
vertices i and j if the two vertices share at least one common color.

The construction of a random intersection graph introduces correlations in the
selection of edges as does our model. However, the degree of a node is still binomial
(n− 1, p) distributed, where p = 1 −∏k−1

�=0(1 − k/(m− �)).
Random intersection graphs have been used to model the Eschenauer–Gligor key

distribution in (wireless) networks [21], e.g., [43]. Each node in a network is assigned
k keys out of a pool of m keys, and two nodes can communicate with each other only
if they share a common key. Hence, the connectivity of the network can be studied by
examining the graph connectivity of G(n,m, k) random intersection graph.

4. Random graphs with hidden variables: In a random graph with hidden variables studied
in [12] (and later generalized in [9]), there are n vertices, each of which is assigned a
“fitness” (or “vertex-importance”) denoted by ςi . These fitness values are modeled using
n i.i.d. rvs with some common distribution. For given fitness values of the vertices, there
is an undirected edge between two vertices i and j with probability f (ςi, ςj ) for some
function f . It is clear that this construction of a random graph introduces correlations
in the edges via the fitness values of vertices.

This type of random graph is used to generate graphs with widely varying de-
gree distributions, including power law distribution (so-called scale-free networks) [12],
without having to resort to preferential attachment [1, 38]. In fact, somewhat surpris-
ingly, it is shown [12] that scale-free networks can be generated even by nonscale-free
distributions for fitness values.

5. Random threshold graphs: A random threshold graph is a special case of random graphs
with hidden variables [35]. In a random threshold graph, the edge selection function f
takes the form

f (ςi, ςj ) =
{

1 if ςi + ςj > �,

0 if ςi + ςj ≤ �,

where � is some threshold.
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6. Random geometric graphs: In a random geometric graph with n vertices on a spatial
domain D, which is often a subset of IRk for some k ∈ IN := {1, 2, . . .}, the locations
of the n vertices are given by n i.i.d. rvs X(n)

i , i = 1, 2, . . . , n, that are distributed
over D according to a common spatial distribution.3 Two vertices i and j then have an
undirected edge between them if

∣∣∣∣∣∣X(n)
i − X(n)

j

∣∣∣∣∣∣ ≤ γ,

where || · || denotes some norm (e.g., L2 norm) used to measure the distance between
two vertices, and γ is some threshold.

Random geometric graphs are often used to model the one-hop connectivity in
wireless networks, where the threshold γ can be viewed as a proxy to the communication
range employed by wireless nodes; e.g., [27, 33, 34].

7. k-nearest neighbor random graphs: Another important random graph model, which
is related to both the proposed model and random geometric graphs, is the k-nearest
neighbor graph (kNNG) model [5,6,7,42]. The kNNGs are used to model the one-hop
connectivity in wireless networks, in which each node initiates two-way communication
with k nearest nodes; e.g., [42].

Loosely speaking, there are two types of kNNGs—directed and undirected. Simi-
larly as in a random geometric graph, a kNNG with n vertices is defined using n i.i.d. rvs
X(n)
i , i = 1, 2, . . . , n. These rvs represent the locations of n vertices and are distributed

over D ⊆ IRd , where d is typically not larger than three. For each vertex i, let N (n)
i (k)

be the set of k vertices that are closest to vertex i according to some fixed norm. In a
directed kNNG, there is a directed edge from vertex i to each vertex in N (n)

i (k). For an
undirected kNNG, we replace the directed edges with undirected edges.

It is clear that both random geometric graphs and kNNGs introduce correlations
in the existing edges via the locations of the vertices, i.e., X(n)

i , i = 1, 2, . . . , n.

8. Configuration model: Given a set of n vertices and their degree sequence d = (di ; i =
1, 2, . . . , n), the configuration model produces a random graph with specified de-
grees [32,36,37]: initially, each vertex i is assigned di “stubs” or “half edges.” Then, the
edge set is constructed as a uniformly random matching on the stubs, i.e., each matching
is selected with equal probability. Note that the resulting graph is not necessarily simple
and may contain multiedges or self-loops.

The configuration model is often used to generate scale-free random networks
with a power law degree distribution or other random networks with the same degree
sequence as a real-world network.

It is noteworthy that the last six random graph models introduce correlations in
edge selection through attributes associated with vertices. In contrast, in our random graph
model, correlations are introduced through attributes associated with edges.

3The independence or homogeneity of node locations fails to hold in many practical scenarios.
Heterogeneous mobility cases, still under an independence assumption were studied in [33]. In another
work, the independence assumption in one-dimensional situations was relaxed and correlations were
introduced via group mobility [34].
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4. GRAPH CONNECTIVITY AND DIAMETER

Before we state the questions of interest, we first introduce the definition of graph connec-
tivity we adopt throughout the paper and define the diameter of an undirected graph.

Definition 4.1 We say that an undirected graph G = (V, E) is connected if it is possible
to reach any node from any other node through a sequence of neighbors. In other words,
for every pair of distinct nodes i and j , we can find K ∈ IN and a sequence of nodes
i1, i2, . . . , iK such that

i. i1 = i and iK = j , and
ii. (ik, ik+1) ∈ E for all k = 1, 2, . . . , K − 1.

The subgraph (Vp, Ep) =: P in Definition 4.1, where Vp = {i1, i2, . . . , iK} and
Ep = {(i1, i2), (i2, i3), . . . , (iK−1, iK )}, is called a path between nodes i and j . The length
of path P is defined as K − 1.

SupposeG = (V, E) is an undirected graph. The distance between two distinct nodes
i, j ∈ V is the minimum among the lengths of all paths between the two nodes, i.e., the
length of the shortest path between nodes i and j . We denote this distance by d(i, j ). When
there is no path between two nodes i and j , we set d(i, j ) = ∞.

Definition 4.2 The diameter of an undirected graph G is defined to be

D(G) = max
{
d(i, j ) | i, j ∈ V, i �= j

}
.

In other words, the diameter of G is the largest distance among all pairs of nodes.

We are interested in the following questions: Let G (n, k) be a random graph described
in Section 2.

Question #1: How large should k be in order to ensure connectivity of G (n, k) whp for
large values of n?

Question #2: When G (n, k) is connected, what is its diameter?

Unfortunately, computing the exact probability that the random graph G (n, k) is connected
for fixed values of n and k is difficult. Similarly, finding the diameter of G (n, k), although
in principle computationally feasible once the edge set is revealed, can be computationally
demanding for large n.

For these reasons, we turn to the asymptotic analysis with an increasing number of
nodes n. We first examine how k should scale as a function of n (denoted by k(n)) in order for
the random graph G (n, k(n)) to be connected whp. In particular, we are interested in finding
the smallest k(n) that ensures connectivity of G (n, k(n)) whp. Second, we investigate the
diameter of G (n, k(n)) when k(n) is of the same order as the smallest value that yields a
connected graph.

5. MAIN RESULTS ON CONNECTIVITY AND DIAMETER

In this section, we provide a partial answer to the questions we posed in the previous
section. More specifically, we show that, whp, (i) the smallest k(n) required for graph
connectivity is of the order log(n), and (ii) the diameter of G (n, k(n)) is approximately
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log(n)/ log(log(n)) when k(n) is not much larger than the smallest value that produces
graph connectivity.

5.1. Connectivity of G (n, k(n))

First, we derive a sufficient condition on k(n) so that G (n, k(n)) is connected (with
probability close to one) for large values of n. Let β� be the unique solution to β =
exp

(√
2/β

)
, which is approximately 2.4626.

Theorem 5.1. Suppose that β > β� and k(n) ≥ β · log(n) for all sufficiently large n.
Then,

P [G (n, k(n)) is connected] → 1 as n → ∞.

Proof. A proof of the theorem is provided in Appendix A.

The proof of Theorem 5.1 reveals the following very interesting fact. Under the
condition in Theorem 5.1, with probability approaching one as n → ∞, we can find an
Erdös–Rényi random graph G(n, p(n)) with p(n) = ζ log(n)/n, ζ > 1, whose edge set is
contained in the edge set of G (n, k(n)). Since the Erdös–Rényi random graph G(n, p(n))
is connected with probability going to one when ζ > 1 [10], this implies that our random
graph is connected with probability tending to one as n increases.

Theorem 5.1 tells us that the smallest k(n) necessary for graph connectivity only
needs to scale as O

(
log(n)

)
. The following theorem states that it is �

(
log(n)

)
as well.

Theorem 5.2. Suppose that α < 0.5 and k(n) ≤ α · log(n) for all sufficiently large n.
Then,

P [G (n, k(n)) contains an isolated node] → 1 as n → ∞.

Proof. A proof of the theorem is given in Appendix C.

Because the probability that a graph is not connected is lower bounded by the
probability that there is at least one isolated node in the graph, Theorem 5.2 implies
that, under the stated condition, G (n, k(n)) is connected with probability going to 0 as
n → ∞.

Our findings in Theorems 5.1 and 5.2 indicate that, for large n, the smallest k(n) we
need in order for G (n, k(n)) to be connected lies in [0.5 log(n), β� log(n)] whp. Hence, the
smallest k(n) required for graph connectivity scales as �(log(n)).

5.2. Diameter of G (n, k(n))

In this subsection, we study the diameter of G (n, k(n)) when the condition in Theorem
5.1 holds.
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Theorem 5.3. Suppose that k(n) = �
(

log(n)
)

such that lim infn→∞ k(n)/ log(n) > β�.
Then, the diameters of G (n, k(n)), n ∈ IN+, satisfy the following: for any positive ε > 0,

lim
n→∞ P

[ ∣∣∣∣∣ D
(
G (n, k(n))

)
log(n)/ log(log(n))

− 1

∣∣∣∣∣ > ε

]
= 0.

In other words, D
(
G (n, k(n))

)
/
(

log(n)/ log(log(n))
)

converges to one in probability.

Proof. Please see Appendix F for a proof.

Theorem 5.3 implies that if k(n) ≈ κ log(n) for some κ > β� for all sufficiently
large n, the diameter of G (n, k(n)) is close to log(n)/ log(log(n)) with high probability.
For example, when n is 106 and 109, we have log(n)/ log(log(n)) ≈ 5.2615 and 6.8365,
respectively. Hence, the diameter of G (n, k(n)) increases rather slowly with the number of
nodes in the graph under the condition in Theorem 5.3. This is commonly called the small
world phenomenon in the literature [18].

6. NUMERICAL RESULTS

6.1. Connectivity

Our findings in Section 5.1 suggest an interval to which the smallest k(n) that yields
graph connectivity belongs (whp). However, it does not establish the existence of a sharp
phase transition that we observe, for instance, with the Erdös–Rényi random graphs [10].
In this section, we provide some numerical results to look for an answer to this question.
In our numerical examples, for n = 50, 200, 800, 3000, and 8000, we vary the value of
parameter k to see how the probability of graph connectivity changes with k. The empirical
probability is obtained as the fraction of times the graph is connected out of 200 realizations
for each point. This is plotted in Figure 1. The dotted vertical red lines in Figure 1(a) indicate
k = log(n) for different values of n.

Figure 1 Probability of graph connectivity as a function of (a) k and (b) k/ log(n) for n = 50, 200, 800, 3000,
and 8000.
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There are two observations we can make from Figure 1. First, the probability of
graph connectivity rises sharply as k increases over a short interval around log(n). For
instance, for n = 3000, we have 0.5 log(n) = 4.00 and β� log(n) = 19.72. It is clear
from Figure 1(a) that, already for n = 3000, the rapid ascent in the probability of graph
connectivity with increasing k takes place over an interval much shorter than the interval
[0.5 log(n), β� log(n)] = [4.00, 19.72]. This is corroborated by Figure 1(b), which suggests
that (most of) the transition occurs over [0.8 log(n), 1.2 log(n)].

Second, the plots of the graph connectivity probability for different values of n shown
in Figure 1(a) resemble horizontally shifted versions of each other. Hence, the transition
width, i.e., the length of the interval over which the probability increases from (close to)
zero to (close to) one, does not appear to depend on n and may behave like �(1) for large
n. This implies that the transition width normalized by log(n) diminishes to zero with
increasing n.

We illustrate this point using Figure 1(b). Note that the plots of connectivity prob-
ability with varying n intersect where k/ log(n) is approximately one. In addition, as n
increases, the slope of the transition around the intersection point climbs as well, thereby
exhibiting decreasing transition width when normalized by log(n).

These two observations—(i) the sharp transition in the probability of graph con-
nectivity occurs over a short interval centered around log(n), and (ii) the transition width
may behave like �(1)—together suggest that, for large n, the distribution of the smallest
k(n) needed for graph connectivity could be concentrated around log(n). This leads to the
following conjecture.

Conjecture 6.1 Suppose that β > 1 and k(n) ≥ β · log(n) for all sufficiently large n. Then,
P [G (n, k(n)) is connected] → 1 as n → ∞. Similarly, if β < 1 and k(n) ≤ β · log(n)
for all sufficiently large n, P [G (n, k(n)) is connected] → 0 as n → ∞.

6.2. Node Isolation

It is well known that for the Erdös–Rényi random graphs, when the graph does
not have an isolated node, the graph is likely connected as well. This is captured by the
following sharp result:

1. If the edge selection probability p(n) ≤ α log(n)/nwith α < 1, P [G(n, p(n)) contains
an isolated node ] → 1 as n → ∞.

2. If the edge selection probability p(n) ≥ β log(n)/n with β > 1,
P [G(n, p(n)) is connected ] → 1 as n → ∞.

A similar observation is true for random geometric graphs and many other graphs. Hence,
it is of interest to see if a similar observation holds with our random graphs.

Figure 2 plots the probability that there is no isolated node in G (n, k(n)) for the same
set of values of n and k used in Figure 1. By comparing Figures 1(a) and 2, it is clear that
the probability that G (n, k(n)) contains no isolated node is very close to the probability that
it is connected. Hence, the figures suggest that, for large n, whp the minimum k necessary
for graph connectivity is close, if not equal, to the smallest k required to eliminate isolated
nodes in the graph. We formalize this observation in the form of following conjecture.
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Figure 2 Probability of no isolated node as a function of k for n = 50, 200, 800, 3000, and 8000.

Conjecture 6.2 Suppose that kC(n) and kNI (n) denote the minimum k required for graph
connectivity and no node isolation, respectively. Then, kNI (n)/kC(n) converges to one in
probability.

6.3. Diameter

Figure 3 shows the probability mass function (PMF) of the graph diameter
D
(
G (n, k)

)
for n = 50 and 1000. For n = 50 and 1000, we have β� log(n) = 9.634

and 17.011, respectively. In order to ensure that the graphs are connected whp, we set
k = 11 and 18 for n = 50 and 1000, respectively. With these values of k, all 400 realized
graphs (200 realizations for each value of n) are connected. The plots in Figure 3 are the
empirical PMFs obtained from the 200 realizations for each plot.

For n = 50 and 1000, we get log(n)/ log(log(n)) = 2.8679 and 3.5742, respectively.
Hence, Theorem 5.3 suggests that, assuming n is sufficiently large, the distribution of the
graph diameter should be concentrated around �log(n)/ log(log(n))�, which is 3 and 4 for
n = 50 and n = 1000, respectively. Indeed, the PMFs in Figure 3 indicate that, although
our finding is asymptotic in nature, even for n = 50 the diameter of G (n, k) is concentrated
on 3; 196 realized graphs have a diameter of 3, and the remaining four realized graphs have
a diameter of 4. For n = 1000, 198 realized graphs have a diameter of 4 with the other two
realized graphs having a diameter of 5.

6.4. Average Node Degree and Node Degree Distribution

In this subsection, we discuss (i) average node degrees and (ii) node degree distri-
butions in the proposed graph model. Figure 4 plots the average node degree for n = 200
and 8000 as the parameter k is varied. It is clear from the figure that the average node
degree can be well approximated using an affine function of k. The best linear regression
line for n = 200 (resp. n = 8000) we obtain, using the polyfit function in MATLAB, is
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Figure 3 Probability mass function of graph diameter; (a) n = 50, and (b) n = 1000 (empirical PMF of 200
realizations).

average degree(k) = 0.8918·k−0.6236 (resp. average degree(k) = 0.9168·k−0.8412).
The linear regression line for n = 8000 is shown in Figure 4.

We plot the node degree distribution for different values of k for n = 200 and 8000
in Figure 5. The three values of k used to generate the plots correspond to �0.5 · log(n)�,
�log(n)�, and �2 · log(n)� for both values of n. First, the plots indicate that the PMF of node
degree is increasing in degree between zero and k in all six cases we consider. Second,
they reveal that the node degree distribution in the proposed graph model is quite different
from that of the Erdös–Rényi graph model, as we explain in the subsequent section. Third,
for k = �0.5 · log(n)�, the fraction of isolated nodes, i.e., nodes with zero degree, is
nonnegligible, as expected from Figure 2.

7. DISCUSSION

In this section, we briefly compare our findings on the proposed random graph model
to the properties of some of the random graph models outlined in Section 3.

7.1. Graph Connectivity

It is well known that, for sufficiently large n, both Erdös–Rényi random graphs and
random geometric graphs (with uniform spatial distribution) are connected (resp. discon-
nected) whp if the average node degree is suitably larger (resp. smaller) than log(n) [10,39].
Similarly, the smallest k needed for connectivity of kNNGs is shown to be�(log(n)) for both
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Figure 4 Average node degree as a function of k for n = 200 and n = 8000.

directed and undirected graphs [5,6,7]. For example, if k(n) ≤ cl · log(n) with cl < 0.3043
(resp. k(n) ≥ cu ·log(n) with cu > 0.5139), an undirected kNNG is disconnected (resp. con-
nected) whp for sufficiently large n [6]. Similar bounds are derived for (strong) connectivity
of directed kNNGs in [6]. Moreover, the existence of critical constant c� ∈ [0.3043, 0.5139]
is established for undirected kNNGs in [7].

Another interesting random graph model related to kNNGs and our proposed model
is the mutual k-nearest neighbor graphs, whose connectivity is studied in [11]. In a mutual
kNNG, an undirected edge exists between two distinct vertices i and j if and only if
i ∈ N

(n)
j (k) and j ∈ N

(n)
i (k) in the directed kNNG. In other words, mutual selection is

required, as in our proposed model. The smallest k necessary for graph connectivity of a
mutual kNNG, denoted by k�(n), is shown to be O(log(n)) [11]. Note that k�(n) cannot be
smaller than the smallest k required for connectivity of the undirected kNNG. Because the
lower bound for the smallest necessary k in undirected kNNGs is at least 0.3043· log(n)
(whp) [6], together with the finding in [11], we have k�(n) = �(log(n)).

Theorems 5.1 and 5.2 reveal that the smallest k necessary for graph connectivity in
the proposed model is also �(log(n)). However, as shown in Figure 4, the average degree
of nodes around the conjectured threshold, i.e., log(n), appears to be different from those
of the Erdös–Rényi graphs, random geometric graphs, and kNNGs.

7.2. Node Degree Distribution

Recall from Section 3 that the node degree distribution in the G(n, p) model is
binomial(n−1, p). Similarly, when the spatial distribution of nodes in a random geometric
graph is uniform over the spatial domain D, except for the nodes close to the boundary of
D, a node degree is binomial(n− 1, p) distributed, where p is equal to the communication
area of a node, i.e., the area within γ from the node, divided by the area of D. For large
n and small p, this binomial distribution can be approximated using a Poisson distribution
with parameter λ = n · p. We plot this Poisson distribution for two cases: (a) n = 200 and
k = 11 = �2 · log(200)� and (b) n = 8000 and k = 18 = �2 · log(8000)�. For these two
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Figure 5 Node degree distribution for (a) n = 200 and (b) n = 8000.

cases, the average node degrees from Figure 4 are 9.19 and 15.57, respectively. We set the
value of Poisson parameter λ to these values and compare the Poisson distribution to the
empirical node degree distribution shown in Figure 5. This is displayed in Figure 6.

It is evident from the figure that the node degree distributions behave quite differently
in these random graph models when the average node degrees are similar. For instance,
although a node degree cannot exceed k in the proposed graph model, there is nonnegligible
probability that a node degree is significantly larger than the average node degree in the
G(n, p) model and the random geometric graph model.

However the proof of Theorem 5.1 in Appendix A suggests that, for all sufficiently
large n, if k > β� · log(n), where β� ≈ 2.4626, we can find an Erdös–Rényi graphG(n, p)
with p = (1+ ε) log(n)/n and ε > 0, which is embedded in G (n, k) and is connected whp.
Obviously, when such an embedded Erdös–Rényi graph exists, a node degree in the Erdös–
Rényi graph cannot exceed k. This can be seen in Figure 6. When the parameter of the
Poisson distribution is set to λ = log(n), which is 5.3 and 8.99 for n = 200 and n = 8000,
respectively, the probability that the Poisson rv exceeds k = �2 · log(n)� < β� · log(n) is

Figure 6 Node degree distribution and Poisson distribution approximation for (a) n = 200 and k = 11 and (b)
n = 8000 and k = 18.
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very small, especially for n = 8000. This is a consequence of the well-known concentration
of a Poisson rv around its mean.

8. CONCLUSIONS

We have proposed a new random graph model that allows us to capture the strategic
nature of nodes, which arises naturally in many situations. The proposed random graphs
are constructed in a very different fashion than are existing random graph models and
likely exhibit different statistical behavior. We believe that the new random graph model
will prove to be useful for modeling the network formation in distributed systems in which
the agents are free to choose their neighbors based on the estimated benefits and/or local
information.

We are currently working to generalize the proposed random graph model. First, we
are studying the case in which the edge values are not symmetric, but instead are correlated.
Second, we are also examining scenarios in which the number of potential edges chosen
by each node varies and is modeled as a random variable.
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APPENDICES

Appendix A. Proof of Theorem 5.1

First, note that the probability of graph connectivity is increasing in k. Therefore, in
order to prove the theorem, it suffices to show that when k(n) = β log(n), n ∈ IN+, for any
β > β�,4 the probability that G (n, k(n)) is connected goes to one as n increases. For each
n ∈ IN+, we first order the edge values seen by each node by decreasing value: For each
i ∈ V (n), let U (n)

i,1 , . . . , U
(n)
i,n−1 denote the order statistics of Vi,j , j ∈ V (n) \ {i}.5 Then, it is

clear that U (n)
i,1 , . . . , U

(n)
i,k(n) are the values of the k(n) edges selected by node i.

Recall from observation O-3 in Section 2 that we can assume any continuous distribu-
tion for the edge value distribution F without affecting our result. Taking advantage of this
fact, we assume F ∼ exponential(1) in the proof. In other words, edge values Vi,j , i �= j ,
are assumed to be i.i.d. exponential rvs with a mean of one.

4When β log(n) is not an integer, we can assume that k(n) = �β log(n)� without any problem
because we can always find β satisfying β� < β < β and finite n�(β) such that, for all n ≥ n�(β),
we have β log(n) ≤ �β log(n)�.

5Throughout the proofs, we assume that the order statistics are ordered by decreasing value.
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We first introduce a lemma that will be used to complete the proof of the theorem. Its
proof is given in Appendix B.

Lemma A.1. Suppose that the edge values are given by i.i.d. exponential(1) rvs. For each
n ∈ IN+ and i ∈ V (n), let

A
(n)
i =

{(
U

(n)
i,k(n) − log

(
n− 1

k(n)

))
∈
(

−
√

2

β
,

√
2

β

)}

and A(n) := ⋂
i∈V (n) A

(n)
i . Then, P

[
A(n)

] → 1 as n → ∞.

Lemma A.1 tells us that, as n increases, whp

U
(n)
i,k(n) ∈

(
log

(
n− 1

k(n)

)
−
√

2

β
, log

(
n− 1

k(n)

)
+
√

2

β

)
=: B�(n)

simultaneously for all i ∈ V (n).
For each n ∈ IN+, let v̄n := log

(
(n− 1)/k(n)

)+ √
2/β and

p∗(n) := P
[
V1,2 > v̄n

] = e−(log(n−1)−log(k(n))+√
2/β) = k(n)

n− 1
e−

√
2/β .

Substituting β log(n) for k(n),

p∗(n) = β log(n)

n− 1
e−

√
2/β = ζ

log(n)

n− 1
, (A.1)

where ζ := β exp
(−√

2/β
)
. From the assumptionβ > β� = exp

(√
2/β�

)
> exp

(√
2/β

)
,

we have ζ > 1.
We complete the proof with the help of new random graphs that are constructed using

the same vertex sets and edge values used to define G (n, k(n)), n ∈ IN+: For each n ∈ IN+,
define a new random graph G̃(n, v̄n) = (V (n), E (n)

new), where

E (n)
new = {

(i, j ) | i, j ∈ V (n), i �= j, Vi,j > v̄n
}
.

From the i.i.d. assumption of the edge values and (A.1),

P
[
(i, j ) ∈ E (n)

new

] = ζ
log(n)

n− 1
= p∗(n) for all i, j ∈ V (n), i �= j,

independently of other edges. In other words, each undirected edge (i, j ) between a pair
of nodes i and j belongs to E (n)

new with probability p∗(n), independently of each other.
Therefore, the new random graph G̃(n, v̄n) is in fact an Erdös–Rényi graph G(n, p∗(n)),
constructed using the same edge values, with the edge probability p∗(n) given in (A.1).
Moreover, since ζ > 1 [19, 20], we know

P
[
G̃(n, v̄n) is connected

] → 1 as n → ∞. (A.2)

We now upper bound the probability that G (n, k(n)) is not connected, using the law
of total probability.

P [G (n, k(n)) is not connected] = P
[(
A(n)

)c ∩ {G (n, k(n)) is not connected}]
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+ P
[
A(n) ∩ {G (n, k(n)) is not connected}]

≤ P
[(
A(n)

)c]+ P
[
A(n) ∩ {G (n, k(n)) is not connected}]

(A.3)

First, Lemma A.1 states that P [(A(n))c] goes to zero as n increases. Second, when the event
A(n) is true, U (n)

i,k(n) ∈ B�(n) and, consequently, U (n)
i,k(n) < v̄n for all i ∈ V (n). This implies

that all edges (i, j ), i, j ∈ V (n) and i �= j , with Vi,j > v̄n belong to the edge set E (n) of
G (n, k(n)) because both of the end nodes would choose the edges. Hence, since the edges
in G̃(n, v̄n) are precisely those with edge values larger than v̄n, when the event A(n) occurs,
all the edges in E (n)

new also belong to E (n). This in turn tells us that when (a) the event A(n)

happens and (b) the graph G̃(n, v̄n) is connected, the graph G (n, k(n)) is also connected.
Based on this observation, we can find the following upper bound for the second term

in (A.3).

P
[
A(n) ∩ {G (n, k(n)) is not connected}] ≤ P

[
A(n) ∩ {G̃(n, v̄n) is not connected}]

≤ P
[
G̃(n, v̄n) is not connected

]
(A.4)

From (A.2), as n increases, the random graph G̃(n, v̄n) is connected with probability
approaching one, thereby implying that (A.4) goes to zero as n → ∞. Therefore, the
second term in (A.3) goes to zero as n increases, and P [G (n, k(n)) is not connected] →
0 as n → ∞.

Appendix B. Proof of Lemma A.1

Define B(n) := (−√
2 log(n),

√
2 log(n)

)
, n ∈ IN+. From [22, (2.12), p. 24] and

[14, Theorem 10.8.1, p. 312], for any δ > 0, there exists finite n(δ) such that, for all
n ≥ n(δ),

P
[√
k(n)

(
U

(n)
i,k(n) − log

(
(n− 1)/k(n)

)) �∈ B(n)
]

= P
[(
A

(n)
i

)c]
≤ 2(1 + δ) Q

(√
2 log(n)

)
,

where Q is the complementary cumulative distribution function of a standard normal rv.
Using a well-known upper bound for Q(x), exp(−x2/2)/(

√
2πx) [30],

P
[(
A

(n)
i

)c]
≤ 2(1 + δ)

1√
2π

exp
(
− 2 log(n)

2

)
√

2 log(n)

= (1 + δ)
exp (− log(n))√

π log(n)
= 1 + δ

n
√
π log(n)

. (A.5)

Since A(n) = ⋂
i∈V (n) A

(n)
i , using a union bound and (A.5),

P
[(
A(n)

)c] ≤
∑
i∈V (n)

P
[(
A

(n)
i

)c]
≤ 1 + δ√

π log(n)
.

Therefore, P
[(
A(n)

)c] → 0 or, equivalently, P
[
A(n)

] → 1 as n → ∞.
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Appendix C. Proof of Theorem 5.2

Note that, for any fixed n ≥ 2, the probability P [G (n, k)]
contains at least one isolated node is decreasing in k. Hence, if Theorem 5.2 is true
with k(n) = α log(n) for some α < 0.5,6 then it is also true when k(n) ≤ α log(n). For
this reason, in order to prove the theorem, it suffices to show that the claim in Theorem 5.2
holds if k(n) = α log(n) with α < 0.5.

To this end, we use the (second) moment method: Define Z+ := {0, 1, 2, . . .} to be
the set of nonnegative integers. Suppose {Zn; n = 1, 2, . . .} is a sequence of Z+-valued
rvs with finite second moment, i.e., E

[
Z2
n

]
< ∞ for all n ∈ IN. Then,

lim
n→∞ P [Zn = 0] = 0 if lim

n→∞
(E [Zn])

2

E
[
Z2
n

] = 1. (A.6)

Equation (A.6) can be easily proved using Cauchy–Schwarz inequality [26, p. 65].
For each n ∈ IN+, define I (n)

i = 1 {node i is isolated in G (n, k(n))} , i ∈ V (n), and
C(n) = ∑n

i=1 I
(n)
i . Clearly, C(n) denotes the total number of isolated nodes in G (n, k(n)).

We prove that P [C(n) = 0] → 0 as n → ∞ by means of (A.6). To this end, we first rewrite
both (E

[
C(n)

]
)2 and E

[
(C(n)))2

]
in a more convenient form and then prove that their ratio

converges to one with increasing n, i.e., limn→∞(E
[
C(n)

]
)2/E

[
(C(n)))2

] = 1.

Because I (n)
i , i ∈ V (n), are exchangeable, we have

E
[
C(n)

] = n E
[
I

(n)
1

]
(A.7)

and

E
[(
C(n)

)2
]

= E

⎡
⎣( n∑

i=1

I
(n)
i

)2
⎤
⎦ = n E

[
I

(n)
1

]
+ n(n− 1)E

[
I

(n)
1 · I (n)

2

]
. (A.8)

Using (A.7) and (A.8), we get

(
E
[
C(n)

])2

E
[(
C(n)

)2
] =

(
n E

[
I

(n)
1

] )2

n E
[
I

(n)
1

]
+ n(n− 1)E

[
I

(n)
1 I

(n)
2

]

=

⎛
⎜⎝(n E

[
I

(n)
1

])−1
+ n− 1

n
·

E
[
I

(n)
1 I

(n)
2

]
(

E
[
I

(n)
1

])2

⎞
⎟⎠

−1

. (A.9)

The proof of the theorem can be completed with help of Lemmas A.2 and A.3.

Lemma A.2. Under the condition in Theorem 5.2, the expected values of C(n), n ∈ IN+,
satisfy

lim
n→∞ E

[
C(n)

] = lim
n→∞

(
n E

[
I

(n)
1

])
= ∞.

6For a similar reason stated in the proof of Theorem 5.1 in Appendix A, when α log(n) is not
an integer, we can assume that k(n) = �α log(n)�.
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Proof. Please see Appendix D for a proof.

Lemma A.3. Suppose that the condition in Theorem 5.2 holds. Then,

lim sup
n→∞

E
[
I

(n)
1 I

(n)
2

]
(

E
[
I

(n)
1

])2 ≤ 1.

Proof. Please see Appendix E for a proof.

Lemmas A.2 and A.3, together with (A.9) and the inequality (E [C(n)])2 ≤ E [(C(n))2],
imply that limn→∞((E [C(n)])2/E [(C(n))2]) = 1. Therefore, (A.6) tells us that P [C(n) =
0] → 0 as n → ∞, and the probability that G (n, k(n)) has at least one isolated node
converges to one, completing the proof of the theorem.

In addition, these lemmas also tell us

lim
n→∞

E
[
I

(n)
1 I

(n)
2

]
(

E
[
I

(n)
1

])2 = 1. (A.10)

This can be easily proved by contradiction: Suppose that (A.10) is not true and

lim inf
n→∞

E
[
I

(n)
1 I

(n)
2

]
(

E
[
I

(n)
1

])2 < 1.

This inequality, together with (A.9) and Lemma A.2, implies

lim sup
n→∞

(
E
[
C(n)

])2

E
[(
C(n)

)2
] > 1,

which is a contradiction.

Appendix D. Proof of Lemma A.2

We prove the lemma by showing that, for any fixed ξ ∈ (α, 1), we have E [I (n)
1 ] =

�(n−ξ ). This means E [C(n)] = n E [I (n)
1 ] = �(n1−ξ ) with 1 − ξ > 0. Making use of

observation O-3 in Section 2, we prove this with F ∼ exponential(1).
Define N (n)

1 = {j ∈ V (n) \ {1} | (1, j ) ∈ E
(n)
1 } to be the set of potential neighbors

selected by node 1. In order to prove E [I (n)
1 ] = P [I (n)

1 = 1] = �(n−ξ ), we consider lower
bounds for E [I (n)

1 ] and demonstrate that the lower bounds are�(n−ξ ). These lower bounds
are constructed using the events that (i) U (n)

1,1 is smaller than some given threshold, and (ii)

U
(n)
i,k(n) is greater than the threshold for all i ∈ N

(n)
1 . When these events are true, we have

U
(n)
1,1 < U

(n)
i,k(n) for all i ∈ N

(n)
1 and no node in N (n)

1 chooses an edge with node 1, hence,
implying that node 1 is isolated.
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Pick γ ∈ (0.5, 1) and, for each n ∈ IN+, let �γ (n) := (−φγ (n), φγ (n)), where

φγ (n) :=
√

4γ log(log(n))

k(n)
. (A.11)

For every i ∈ V (n), let

Ã
(n)
i (γ ) =

{(
U

(n)
i,k(n) − log

(
(n− 1)/k(n)

)) �∈ �γ (n)
}
,

and Ã(n)(γ ) := ⋃
i∈N (n)

1
Ã

(n)
i (γ ). In addition, define

B̃
(n)
1 (γ ) =

{ (
U

(n)
1,1 − log

(
(n− 1)/k(n)

))
< −φγ (n)

}
. (A.12)

Using these events, we can find the following lower bound for E [I (n)
1 ].

E
[
I

(n)
1

]
= P

[
I

(n)
1 = 1

]
≥ P

[(
Ã(n)(γ )

)c ∩ {I (n)
1 = 1

}]
≥ P

[(
Ã(n)(γ )

)c ∩ B̃(n)
1 (γ )

]
(A.13)

= P
[(
Ã(n)(γ )

)c ∣∣∣ B̃(n)
1 (γ )

]
P
[
B̃

(n)
1 (γ )

]
, (A.14)

where the second inequality in (A.13) is a result of the following fact: first, in the event
(Ã(n)(γ ))c, (

U
(n)
i,k(n) − log((n− 1)/k(n))

)
∈ �γ (n) for all i ∈ N (n)

1 .

Thus, nodes inN (n)
1 do not pick any edge whose value is less than log

(
(n−1)/k(n)

)−φγ (n).

Second, as U (n)
1,1 = max{V1,i , i ∈ V (n) \ {1}} is the largest edge value seen by

node 1, together with the assumed symmetry of edge values, event B̃(n)
1 (γ ) implies Vi,1 <

log
(
(n − 1)/k(n)

) − φγ (n) for all i ∈ V (n) \ {1}. As a result, when
(
Ã(n)(γ )

)c ∩ B̃(n)
1 (γ )

occurs, we have Vi,1 < U
(n)
i,k(n) for all i ∈ N

(n)
1 and node 1 is isolated. This tells us

P [(Ã(n)(γ ))c ∩ B̃(n)
1 (γ )] ≤ P [(Ã(n)(γ ))c ∩ {I (n)

1 = 1}], proving the inequality in (A.13).
In light of (A.14), Lemma A.2 is an immediate consequence of the following two

claims we prove.

C1-a. P [B̃(n)
1 (γ )] = �(n−ξ ) for any ξ ∈ (α, 1); and

C1-b. limn→∞ P [(Ã(n)(γ ))c | B̃(n)
1 (γ )] = 1.

D.1. Proof of claim C1-a

First, sinceU (n)
1,1 is the maximum among n−1 i.i.d. exponential(1) rvs, the distribution

of (U (n)
1,1 − log(n − 1)) converges to a standard Gumbel distribution [14, 15], i.e., for all

x ∈ R,

P
[(
U

(n)
1,1 − log(n− 1)

)
≤ x

]
→ exp(− exp(−x)) as n → ∞.
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Using this distributional convergence and the definition of event B̃ (n)
1 (γ ) in (A.12), after a

little algebra, we can prove

P
[
B̃

(n)
1 (γ )

]
∼ exp(− exp(−(− log(k(n)) − φγ (n)))).

Substituting α log(n) for k(n),

P
[
B̃

(n)
1 (γ )

]
∼ exp(−α log(n) exp(φγ (n))) = 1

nα ψ(n)
, (A.15)

where ψ(n) := exp(φγ (n)). Note from (A.11) that φγ (n) → 0 as n → ∞. Thus,
limn→∞ ψ(n) = 1 and, for any given ξ ∈ (α, 1), we can find finite n�(ξ ) such that, for all
n ≥ n�(ξ ), we have α ψ(n) < ξ . Together with (A.15), this implies P [B̃ (n)

1 (γ )] = �(n−ξ ).

D. 2. Proof of claim C1-b

In order to prove the claim, we show limn→∞ P [Ã(n)(γ ) | B̃(n)
1 (γ )] = 0. To this end,

we construct upper bounds for P [Ã(n)(γ ) | B̃(n)
1 (γ )] with the help of another sequence of

events (denoted by Ā(n), n ∈ IN+) that are closely related to Ã(n)(γ ) and are independent
of B̃(n)

1 (γ ), and demonstrate that these upper bounds converge to zero as n → ∞.
Recall that, in the event B̃(n)

1 (γ ), we have

Vi,1 ≤ U
(n)
1,1 < log

(
(n− 1)/k(n)

)− φγ (n) for all i ∈ V (n) \ {1}.

Clearly, conditional on B̃(n)
1 (γ ), the event Ã(n)

i (γ ), i ∈ V (n) \ {1}, takes place if and only if
the k(n)-th largest value among the remaining edge values Vi,j , j ∈ V (n) \ {1, i}, does not
belong to �γ (n).

Let Ũ (n)
i,� , � = 1, 2, . . . , n − 2, be the order statistics of Vi,j , j ∈ V (n) \ {1, i}. We

denote the event Ã(n)
i (γ ) conditional on B̃(n)

1 (γ ) by

Ã
(n)
i (γ ) | B̃(n)

1 (γ ) =
{(
Ũ

(n)
i,k(n) − log

(
(n− 1)/k(n)

)) �∈ �γ (n)
} ∣∣ B̃ (n)

1 (γ )

=
{(
Ũ

(n)
i,k(n) − log

(
(n− 2)/k(n)

)) �∈ ��
γ (n)

} ∣∣ B̃ (n)
1 (γ ),

where

��
γ (n) :=

(
−φγ (n) + log

(
n− 1

n− 2

)
, φγ (n) + log

(
n− 1

n− 2

))
.

Because log
(
(n − 1)/(n − 2)

) = o
(
1/

√
log(n)

)
and γ ∈ (0.5, 1), there exists finite n̄(γ )

such that, for all n ≥ n̄(γ ),

�̄(n) :=
(

−
√

2 log(log(n))

k(n)
,

√
2 log(log(n))

k(n)

)
⊆ ��

γ (n).

Define

Ā
(n)
i =

{(
Ũi,k(n) − log

(
(n− 2)/k(n)

)) �∈ �̄(n)
}
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and Ā(n) := ⋃
i∈N (n)

1
Ā

(n)
i . For all n ≥ n̄(γ ), because �̄(n) ⊆ ��

γ (n), we have

P
[
Ã(n)(γ ) | B̃(n)

1 (γ )
]

≤ P
[
Ā(n) | B̃(n)

1 (γ )
]

= P
[
Ā(n)

]
,

where the equality follows from the assumed independence of edge values.
We now prove P [Ā(n)] → 0 as n → ∞. Following similar steps as in the proof of

Lemma A.1 in Appendix B, we can show that, for any δ > 0 and all sufficiently large n,

P
[
Ā

(n)
i

]
≤ 2(1 + δ) Q

(√
2 log(log(n))

)
≤ (1 + δ)

exp(− log(log(n)))√
π log(log(n))

= 1 + δ

log(n)
√
π log(log(n))

. (A.16)

Using a union bound and (A.16) and substituting α log(n) for k(n) = |N (n)
1 |, we

obtain

P
[
Ā(n)

] ≤
∑
i∈N (n)

1

P
[
Ā

(n)
i

]
= α(1 + δ)√

π log(log(n))
→ 0 as n → ∞. (A.17)

Together with the inequality P [Ã(n)(γ ) | B̃(n)
1 (γ )] ≤ P [Ā(n)], (A.17) tells us

lim
n→∞ P

[(
Ã(n)(γ )

)c | B̃(n)
1 (γ )

]
= 1.

Appendix E. Proof of Lemma A.3

In order to prove the lemma, we first demonstrate

P
[
I

(n)
1 = 1, I (n)

2 = 1
]

≤
(

P
[
I

(n)
1 = 1

])2
+ o

((
P
[
I

(n)
1 = 1

])2
)
. (A.18)

This inequality can be easily shown with the help of Theorem (3) in [16] as follows.
First, recall from the proof of Lemma A.2 in Appendix D that P [I (n)

1 = 1] = �(n−ξ )
for any ξ ∈ (α, 1). Let � := 0.5 − α > 0 and ξ † := 0.5(1 − �) = α + 0.5� ∈ (α, 1).
Hence, P [I (n)

1 = 1] = �(n−ξ† ) or, equivalently,

(
P
[
I

(n)
1 = 1

])2
= �(n−(1−�)) = ω(n−1). (A.19)

Second, because I (n)
1 , i ∈ V (n), are exchangeable, Theorem (3) of [16], which is a

generalization of de Finetti’s theorem for finite exchangeable sequences, tells us

P
[
I

(n)
1 = 1, I (n)

2 = 1
]

≤ P
[
I

(n)
1 = 1

]
P
[
I

(n)
2 = 1

]
+ 8

n
. (A.20)

Since (P [I (n)
1 = 1])2 = ω(n−1) from (A.19), we have

8

n
= o

((
P
[
I

(n)
1 = 1

])2
)
. (A.21)
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This completes the proof of (A.18).
Using the upper bound in (A.20) for the numerator, we obtain the following.

lim sup
n→∞

P
[
I

(n)
1 = 1, I (n)

2 = 1
]

(
P
[
I

(n)
1 = 1

])2 ≤ lim sup
n→∞

(
P
[
I

(n)
1 = 1

])2
+ 8/n(

P
[
I

(n)
1 = 1

])2

= 1 + lim sup
n→∞

8/n(
P
[
I

(n)
1 = 1

])2 (A.22)

By (A.21), the second term in (A.22) is equal to zero and, consequently, we get the desired
inequality in the lemma.

Appendix F. Proof of Theorem 5.3

Theorem 5.3 can be proved with the help of the following result for Erdös–Rényi random
graphs.

Theorem 2.8.6. [17, p. 67]: Suppose that the edge selection probabilities p(n), n ∈
IN+, of Erdös–Rényi random graphs G(n, p(n)) satisfy (i) lim infn→∞ np(n)/ log(n) > 1
and (ii) limn→∞

(
log(np(n))/ log(n)

) = 0. Then, the diameters of the Erdös–Rényi random
graphs G(n, p(n)) satisfy

P

[ ∣∣∣∣∣ D
(
G(n, p(n))

)
log(n)/ log(n p(n))

− 1

∣∣∣∣∣ > ε

]
→ 0 as n → ∞

for all ε > 0.

Let

κ = lim inf
n→∞

k(n)

log(n)
and κ = lim sup

n→∞
k(n)

log(n)
.

Then, for any ε > 0, there exists finite ñ(ε) such that, for all n ≥ ñ(ε), we have k(n) ∈
[(κ − ε) log(n), (κ + ε) log(n)]. Pick ε satisfying 0 < ε < κ − β�, and let ñ(ε) be the
smallest n ∈ IN+ that satisfies the condition.

In the rest of the proof, utilizing observation O-3 in Section 2, we assume F ∼
exponential(1). For n ≥ ñ(ε), let κ(n) := k(n)/ log(n) ∈ [κ − ε, κ + ε]. Define

p1(n) = P

[
V1,2 > log

(
n− 1

k(n)

)
+
√

2

κ(n)

]
= ζ1(n)

log(n)

n− 1
, (A.23)

where ζ1(n) := κ(n)e−
√

2/κ(n) > 1 because κ(n) ≥ κ − ε > β�, and

p2(n) = P

[
V1,2 > log

(
n− 1

k(n)

)
−
√

2

κ(n)

]
= ζ2(n)

log(n)

n− 1
, (A.24)

where ζ2(n) := κ(n)e
√

2/κ(n) > ζ1(n).
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For n ∈ IN+, denote by E (n)
ER,1 (resp. E (n)

ER,2) the set of edges (i, j ), i, j ∈ V (n) (i �= j ),
satisfyingVi,j > log

(
(n−1)/k(n)

)+√
2/κ(n) (resp.Vi,j > log

(
(n−1)/k(n)

)−√
2/κ(n)).

Let G(n, p�(n)) := (V (n), E (n)
ER,�

)
, � = 1, 2. As explained in Appendix A, G(n, p�(n)),

� = 1, 2, are Erdös–Rényi random graphs with edge selection probability p�(n) given in
(A.23) and (A.24).

Clearly, p�(n), � = 1, 2, meet the conditions in Theorem 2.8.6 [17, p. 67], which was
stated earlier. Hence, the diameters of Erdös–Rényi random graphs G(n, p�(n)), n ∈ IN+,
satisfy

D
(
G(n, p�(n))

)
log(n)/ log

(
n p�(n)

) P−→ 1, � = 1, 2, (A.25)

where
P−→ denotes convergence in probability. Note that, for all n ≥ ñ(ε), both ζ1(n) and

ζ2(n) lie in the finite interval [(κ − ε)e−
√

2/(κ−ε), (κ + ε)e
√

2/(κ+ε)]. As a result, we have

log(n)

log(n p�(n))
∼ log(n)

log(log(n))
, � = 1, 2. (A.26)

Equations (A.25) and (A.26) tell us

D(G(n, p�(n)))

log(n)/ log(log(n))
P−→ 1, � = 1, 2. (A.27)

To complete the proof, we will prove that, with probability tending to one as n → ∞,
we have

D
(
G(n, p2(n))

) ≤ D
(
G (n, k(n))

) ≤ D
(
G(n, p1(n))

)
. (A.28)

To this end, we will show

lim
n→∞ P

[
E (n)
ER,1 ⊆ E (n) ⊆ E (n)

ER,2

]
= 1, (A.29)

which implies (A.28).
Define

Â(n) =
{(
U

(n)
i,k(n) − log

(n− 1

k(n)

))
∈ �̂(n) ∀ i ∈ V (n)

}
,

where

�̂(n) :=
(

−
√

2

κ(n)
,

√
2

κ(n)

)
.

Following similar steps as in the proof of Lemma A.1 (in Appendix B), we can show
limn→∞ P [Â(n)] = 1.

It is clear that, in the event Â(n), the edge set E (n) of G (n, k(n)) satisfies (A.29);
conditional on the event Â(n), (a) all edges (i, j ) with Vi,j > log

(
(n− 1)/k(n)

)+√
2/κ(n)

belong to E (n), and (b) no edge (i, j ) such that Vi,j ≤ log
(
(n− 1)/k(n)

)− √
2/κ(n) is in

E (n).
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The theorem is then a corollary of the following facts:

i. P [Â(n)] → 1 as n → ∞;
ii. In the event Â(n), inequalities in (A.28) hold; and

iii. The diameters D
(
G(n, p�(n))

)
, � = 1, 2, satisfy (A.27).
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