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Abstract We study competitive diffusion games on graphs introduced in the literature to model
the spread of influence in social networks. Extending results of a prior study for two players, we
investigate the existence of pure Nash equilibria for at least three players on different classes
of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we
answer an open question proving that there is no Nash equilibrium for three players on m × n

grids with min{m, n} ≥ 5. Further extending results of previous studies for two players, we
prove the existence of pure Nash equilibria for four players on every d-dimensional hypercube.

1. INTRODUCTION

Social networks, and the diffusion of information within them, yield an interesting
and well-researched field of study. Among other models, competitive diffusion games have
been introduced [1] as a game-theoretic approach toward modeling the process of diffusion
(or propagation) of influence (or information in general) in social networks. Such models
have applications in “viral marketing,” where several companies (or brands) compete to
influence as many customers (of products) or users (of technologies) as possible by initially
selecting only a “small” subset of target users that will “infect” a large number of other users.
Herein, the network is modeled as an undirected graph in which the vertices correspond
to the users, with edges modeling influence relations between them. The companies, being
the players of the corresponding diffusion game, choose an initial subset of target vertices,
which then influence other neighboring vertices via a certain propagation process. More
concretely, a vertex adopts a company’s product at some specific time during the process
if he is influenced by (that is, connected by an edge to) another vertex that already adopted
this product. After adopting a product of one company, a vertex will never adopt any other
product in the future. However, if a vertex gets influenced by several companies at the same
time, then it will not adopt any of them and it is removed from the game. See Section 1.3
for the formal definitions of the game.

In their initial work, [1] studied how the existence of pure Nash equilibria is influenced
by the diameter of the underlying graph. Following this line of research, [8] investigated
the existence of Nash equilibria for competitive diffusion games with two players on
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several classes of graphs such as paths, cycles, and grid graphs. Notably, she proved that
on sufficiently large grids, there always exists a Nash equilibrium for two players, further
conjecturing that there is no Nash equilibrium for three players on grids. We extend the
results of [8] for two players to three or more players on paths, cycles, and grid graphs,
proving the conjectured nonexistence of a pure Nash equilibrium for three players on grids
as a main result. Also following this line of research, [3] investigated the existence of Nash
equilibria for competitive diffusion games with two players on d-dimensional hypercubes.
We extend their results by showing that there always exists a Nash equilibrium for four
players on any d-dimensional hypercube.

An overview of our results is given in Section 1.2. After introducing the preliminaries
in Section 1.3, we discuss our results for paths and cycles in Section 2, followed by the
proof of our main contribution with respect to grids in Section 3. We discuss hypercubes
in Section 4 and finish with some statements concerning general graphs in Section 5.

1.1. Related Work

The study of influence maximization in social networks was initiated by [6]. Several
game-theoretic models have been suggested, including our model of reference, introduced
by [1]. Some interesting generalizations of this model are the model by [12], who considered
a more complex underlying diffusion process, and the model studied by [3], allowing each
player to choose multiple vertices. The so-called Voronoi games, which are closely related
to our model (but not similar; there, players can share vertices), were studied by [2, 7].
Recently, [4] considered the competitive diffusion game on weighted graphs, including
negative weights. Concerning our model, [1] claimed the existence of pure Nash equilibria
for any number of players on graphs of diameter at most two; however, [11] gave a
counterexample consisting of a graph with nine vertices and diameter two with no Nash
equilibrium for two players.

Our main point of reference is the work of [8], who studied the existence (and
nonexistence) of pure Nash equilibria, mainly for two players on special graph classes
(paths, cycles, trees, unicycles, and grids); indeed, our work can be seen as extending
of that work to more than two players. It was already showed [9] that there is a Nash
equilibrium for any number of players on any star or clique. There is always a pure Nash
equilibrium for two players on a tree as proved by [10], but not always for more than two
players. Safe strategies can be considered for trees and spider graphs, where a safe strategy
is a strategy that maximizes the minimum payoff of a certain player when the minimum is
taken over the possible unknown actions of the other players was.

1.2. Our Results

We begin by characterizing the existence of Nash equilibria for paths and cycles,
showing that, except for three players on paths of length at least six, a Nash equilibrium
exists for any number of players playing on any such graph (Theorems 2.1. and 2.5). We
then prove Conjecture 1 of [8], showing that there is no Nash equilibrium for three players
on Gm×n, as long as both m and n are at least 5 (Theorem 3.1). Then, we prove the existence
of Nash equilibria for four players on any d-dimensional hypercube (Theorem 4.1). Finally,
we investigate the minimum number of vertices such that there is an arbitrary graph with
no Nash equilibrium for k players. We prove an upper bound showing that there always
exists a tree on � 3

2k� + 2 vertices with no Nash equilibrium for k players (Theorem 5.2).
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1.3. Preliminaries

Notation. For i, j ∈ N with i < j , we define [i, j ] := {i, . . . , j} and [i] :=
{1, . . . , i}. We consider simple, finite, undirected graphs G = (V,E) with vertex set V

and edge set E ⊆ {{u, v} | u, v ∈ V }. For two vertices u, v ∈ V , we define the dis-
tance distG(u, v) between u and v to be the length of a shortest path from u to v in G.

A path Pn = (V,E) on n vertices is the graph with V = [n] and E = {{i, i + 1} | i ∈
[n−1]}. A cycle Cn = (V,E) on n vertices is the graph with V = [n] and E = {{i, i +1} |
i ∈ [n − 1]} ∪ {{n, 1}}. For m, n ∈ N, the m × n grid Gm×n = (V,E) is a graph with
vertices V = [m] × [n] and edges E = {{(x, y), (x ′, y ′)} | |x − x ′| + |y − y ′| = 1}. We use
the term position for a vertex v ∈ V . Note that the distance of two positions v = (x, y),
v′ = (x ′, y ′) ∈ V is distGm×n

(v, v′) = ‖v − v′‖1 := |x − x ′| + |y − y ′|. For d ∈ N, d ≥ 1,
the d-dimensional hypercube Hd = (V,E) is defined on the vertex set V = {0, 1}d , that
is, a vertex x = x1 . . . xd ∈ V is a binary string of length d. The set of edges is defined
as E = {{x, y} | �(x, y) = 1}, where �(x, y) := |{i ∈ [d] | xi 
= yi}| is the Hamming
distance of x and y, that is, the number of positions in which x and y have different bits.
Note that distHd

(x, y) = �(x, y).
Diffusion game on graphs. A competitive diffusion game � = (G, k) is defined

by an undirected graph G = (V,E) and a number k of players (we name the players
Player 1, . . . , Player k), each having its distinct color in [k]. The strategy space of each
player is V , such that each player i selects a single vertex vi ∈ V at time 0, which is then
colored by the color i. If two players choose the same vertex v, then this vertex is removed
from the graph. For Player i, we use the terms strategy and position interchangeably to
mean its chosen vertex. A strategy profile is a tuple (v1, . . . , vk) ∈ V k containing the
initially chosen vertex for each player. The payoff Ui(v1, . . . , vk) of Player i is the number
of vertices with color i after the following propagation process. At time t + 1, any so-far
uncolored vertex that has only uncolored neighbors and neighbors colored in i (and no
neighbors with other colors j ∈ [k] \ {i}) is colored in i. Any uncolored vertex with at
least two different colors among its neighbors is removed from the graph. The process
terminates when the coloring of the vertices does not change between consecutive steps. A
strategy profile (v1, . . . , vk) is a (pure) Nash equilibrium if, for any player i ∈ [k] and any
vertex v′ ∈ V , it holds that Ui(v1, . . . , vi−1, v

′, vi+1, . . . , vk) ≤ Ui(v1, . . . , vk).

2. PATHS AND CYCLES

In this section, we fully characterize the existence of Nash equilibria on paths and
cycles, for any number k of players.

Theorem 2.1. For any k ∈ N and any n ∈ N, there is a Nash equilibrium for k players
on Pn, except for k = 3 and n ≥ 6.

The general idea of the proof is to pair the players and distribute these pairs evenly. In
the rest of this section, we prove three Lemmas whose straightforward combination proves
Theorem 2.1.

Lemma 2.2. For any even k ∈ N and any n ∈ N, there is a Nash equilibrium for k players
on Pn.
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Figure 1 Illustrations for Theorem 2.1, showing a Nash equilibrium for six players on P15 (top) and a Nash
equilibrium for five players on P14 (bottom). The boxes show the colored regions of each player.

Proof. If n ≤ k, then a strategy profile in which each vertex of the path is chosen by at
least one player is clearly a Nash equilibrium.

Otherwise, if n > k, then the idea is to build pairs of players, which are then
placed such that two paired players are neighbors, and the distance of any two consecutive
pairs is roughly equal (specifically, differs by at most two). See Figure 1 for an example.
Intuitively, this yields a Nash equilibrium because each player obtains roughly the same
payoff (specifically, differing by at most one), therefore, no player can improve. Because
we have n vertices, we want each player’s payoff to be at least z := � n

k
�. This leaves r := n

mod k other vertices, which we distribute between the first r players such that the payoff
of any player is at most z + 1. This can be achieved as follows. Let pi ∈ [n] denote the
position of Player i, that is, the index of the chosen vertex on the path. We define

pi :=
{

z · i + min{i, r} if i is odd,

pi−1 + 1 if i is even.

Note that, by construction, it holds that p1 ∈ {z, z + 1} and pk = n − z + 1. Moreover, for
each odd index i ≥ 3, we have

pi − pi−1 = zi + min{i, r} − (z(i − 2) + min{i − 2, r} + 1)

= 2z + min{i, r} − min{i − 2, r} − 1.

Note that min{i, r} − min{i − 2, r} ∈ {0, 1, 2} and thus 2z − 1 ≤ pi − pi−1 ≤ 2z + 1.
We claim that ui := Ui(p1, . . . , pk) ∈ {z, z + 1} holds for each i ∈ [k]. Clearly, u1 =
p1 ∈ {z, z + 1} and uk = n − pk + 1 = z. For all odd i ≥ 3, it is not difficult to see that
ui = ui−1 = 1 + �(pi − pi−1 − 1)/2� ∈ {z, z + 1}, which proves the claim.

To see that the strategy profile (p1, . . . , pk) is a Nash equilibrium, consider an
arbitrary Player i and any other strategy p′

i ∈ [n] that is picked. Clearly, we can assume
p′

i 
= pj for all j 
= i since, otherwise, Player i’s payoff is zero. If p′
i < p1 or p′

i > pk ,
then Player i gets a payoff of at most z. If pj < p′

i < pj+1 for some even j ∈ [2, k − 2],
then the payoff is at most 1 + �(pj+1 − pj − 2)/2� ≤ z.

We can modify the construction given in the proof of Lemma 2.2 to also work for
odd numbers k greater than three.

Lemma 2.3. For any odd k > 3 ∈ N and for any n ∈ N, there is a Nash equilibrium for
k players on Pn.

Proof. We give a strategy profile based on the construction for an even number of players
(proof of Lemma 2.2). The idea is to pair the players, placing the remaining lonely player
between two consecutive pairs.



MULTIPLAYER DIFFUSION GAMES 367

This is best explained using a reduction to the even case. Specifically, given the
strategy profile (p′

1, . . . , p
′
k+1) for an even number k+1 of players on Pn+1 as constructed in

the proof of Lemma 2.2, we define the strategy profile (p1, . . . , pk) := (p′
1, . . . , p

′
k−2, p

′
k −

1, p′
k+1 − 1). To see why this results in a Nash equilibrium, let z := �(n + 1)/(k + 1)� and

note that, by construction, it holds that p1 ∈ {z, z + 1}, pk = n − z + 1, and 2z − 1 ≤
pi+1 − pi ≤ 2z + 1 for all i ∈ [2, k − 1]. Moreover, each player receives a payoff of
at least z, therefore, all players (except for Player (k − 2)) cannot improve by the same
arguments as those in the proof of Lemma 2.2. Regarding Player (k − 2), note that the
payoff is

1 + �(pk−1 − pk−2 − 1)/2� + �(pk−2 − pk−3 − 1)/2� ≥ 2z − 1.

Hence, it clearly cannot be improved by choosing any position outside of [pk−3, pk−1].
Also, it cannot be improved by choosing any other position in [pk−3, pk−1]. To see this,
note that the maximum payoff from any position in [pk−3, pk−1] is

1 + �(pk−1 − pk−3 − 2)/2� = 1 + �(pk−1 − pk−2 − 1 + pk−2 − pk−3 − 1)/2�,
which is equal to the aforementioned payoff because pk−1 − pk−2 and pk−2 − pk−3 cannot
both be even, by construction.

It remains to discuss the fairly simple (non)existence of Nash equilibria for three players.
Note that [8] already stated without proof that there is no Nash equilibrium for three players
on G2×n and G3×n and [10] showed that there is no Nash equilibrium for three players
on P7. For the sake of completeness, we prove the following lemma.

Lemma 2.4. For three players, there is a Nash equilibrium on Pn if and only if n ≤ 5.

Proof. If n ≤ 3, then a strategy profile in which each vertex of the path is chosen by at
least one player is clearly a Nash equilibrium. For n ∈ {4, 5}, the strategy profile (2, 3, 4)
is a Nash equilibrium.

To see that there is no Nash equilibrium for n ≥ 6, consider an arbitrary strategy
profile (p1, p2, p3). Without loss of generality, we can assume that p1 < p2 < p3 and
consider the following two cases. First, we assume that p2 = p1 + 1 and p3 = p2 + 1. If
p1 > 2, then Player 2 increases the payoff by choosing p1 − 1. Otherwise, it holds that
p3 < n − 1, and Player 2 increases the payoff by moving to p3 + 1. Therefore, this case
does not yield a Nash equilibrium. For the remaining case, it holds that p1 < p2 − 1 or
p3 > p2 + 1. If p1 < p2 − 1, then Player 1 increases his/her payoff by moving to p2 − 1,
whereas if p3 > p2 + 1, then Player 3 increases his/her payoff by moving to p2 + 1. Thus,
this case does not yield a Nash equilibrium as well, and we are done.

We close this section with the following result considering cycles. Interestingly, for
cycles there exists a Nash equilibrium also for three players.

Theorem 2.5. For any k, n ∈ N, there is a Nash equilibrium for k players on Cn.

Proof. It is an easy observation that the constructions given in the proofs of Lemmas 2.2
and 2.3 also yield Nash equilibria for cycles, that is, when the two endpoints of the path are
connected by an edge. Thus, it remains to show a Nash equilibrium for k = 3 players for
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any Cn. We set p1 := 1, p2 := n and

p3 :=
{

�n/2� if n mod 4 = 1,

�n/2 else.

It is not difficult to check that (p1, p2, p3) is a Nash equilibrium.

3. GRID GRAPHS

In this section we consider three players on the m × n grid Gm×n and we prove the
following theorem.

Theorem 3.1. If n ≥ 5 and m ≥ 5, then there is no Nash equilibrium for three players
on Gm×n.

Before proving the theorem, let us first introduce some general definitions and ob-
servations. Throughout this section, we denote the strategy of Player i, that is, the initially
chosen vertex of Player i, by pi := (xi, yi) ∈ [m] × [n]. Note that any strategy profile in
which more than one player chooses the same position is never a Nash equilibrium, because
in this case, each of these players gets a payoff of zero and can improve his/her payoff by
choosing any free vertex (to obtain a payoff of at least one). Therefore, we will assume
w.l.o.g. that p1 
= p2 
= p3. Further, note that the game is highly symmetric with respect to
the axes. Specifically, reflecting coordinates along a dimension or rotating the grid by 90
degrees yields the same outcome for the game. Thus, in what follows, we consider only
possible cases up to the above symmetries.

We define �x := maxi,j∈[k] |xi − xj | and �y := maxi,j∈[k] |yi − yj | to be the
maximum coordinate-wise differences among the positions of the players. We say that a
player strictly controls the other two players if both reside on the same side of the player,
in both dimensions.

Definition 3.2. Player i strictly controls the other players, if for each other Player j

with j 
= i, either

(xi < xj ) ∧ (yi < yj ), or

(xi < xj ) ∧ (yi > yj ), or

(xi > xj ) ∧ (yi < yj ), or

(xi > xj ) ∧ (yi > yj ) holds.

We now describe the outline for the proof of Theorem 3.1.

Proof of Theorem 3.1 Let m ≥ 5 and n ≥ 5. We perform a case distinction based on
the relative positions of the three players. As a first case, we consider strategy profiles
wherein the players are playing “far” from each other, that is, there are two players whose
positions differ by at least three in some coordinate (formally max{�x,�y} ≥ 3). For these
profiles, we distinguish two subcases: there exist a player who strictly controls the others
(Lemma 3.5) or there does not exist a player who strictly controls the others (Lemma 3.6).
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We prove that none of these cases yields a Nash equilibrium by showing that there always
exists a player who can improve the payoff. Notably, the improving player always moves
closer to the other two players. We are left with the case where the players are playing
“close” to each other, in the sense that their positions all lie inside a 3 × 3 subgrid (that is,
max{�x,�y} ≤ 2). For these strategy profiles, we show that there always exists a player
who can improve the payoff (Lemma 3.7), however, the improving position depends not
only on the relative positions between the players, but also on the global positioning of this
subgrid on the overall grid. This leads to a somewhat erratic behavior, which we overcome
by considering all possible close positions (up to symmetries) in the proof of Lemma 3.7.
Altogether, Lemmas 3.5, 3.6 and 3.7 cover all possible strategy profiles (ruling them out as
Nash equilibria), thus implying the theorem. �

In order to conclude Theorem 3.1, it remains to prove the lemmas mentioned in
the case distinction discussed previously. To this end, we start with two easy preliminary
results. First, we observe that for a vertex for which there is a unique player, the shortest
distance to it is colored in that player’s color (note that this is true in general for every graph
and any number of players).

Observation 3.3. Let G = (V,E) be an undirected graph and let (p1, . . . , pk) be
a strategy profile. Let v ∈ V be a vertex for which there exists an i ∈ [k] such
that distG(pi, v) =: δ < dist(pj , v) holds for all j ∈ [k], j 
= i, then v will be col-
ored in color i at time δ.

Proof. The proof is by induction on the distance δ. For δ = 0, it clearly follows from the
definition of the propagation process that v = pi has color i at time 0. For all δ > 0, it
follows from the induction hypothesis that v has a neighbor u with dist(pi, u) = δ−1 that is
colored in color i at time δ−1. Moreover, for all neighbors w of v, it holds dist(pj ,w) > δ−1
for all j 
= i. This implies that no neighbor of v has a different color than i at time δ − 1,
and thus, v has color i at time δ.

Based on Observation 3.3, we show that whenever a player has distance at least three
to the other players and both of them are positioned on the same side of that player (with
respect to both dimensions), then the payoff can be improved by moving closer to the others
(see Figure 2 for an illustration).

Proposition 3.4. If x1 ≤ xj , y1 ≤ yj , and ‖p1 − pj‖1 ≥ 3 holds for j ∈ {2, 3}, then
Player 1 can increase his/her payoff by moving to (x1 + 1, y1 + 1).

Proof. Let p′
1 := (x1+1, y1+1) and x ∈ [x1] × [y1]. Note that ‖p′

1−x‖1 = ‖p1−x‖1+2 <

‖pj − x‖1 = ‖p1 − pj‖1 + ‖p1 − x‖1 ≥ ‖p1 − x‖1 + 3 holds for j ∈ {2, 3}. Hence,
Player 1 still has the unique shortest distance to x. By Observation 3.3, x is colored with
color 1. Moreover, for any other position x 
∈ [x1] × [y1], there is a shortest path from p1

to x going through at least one of the positions (x1 + 1, y1), (x1, y1 + 1), or p′
1. Clearly,

there is also a shortest path from p′
1 to x of at most the same length going through one of

these positions. Thus, if x was colored with color 1 before, then x is still colored in color 1.
To see that Player 1 strictly increases the payoff, note that ‖p′

1 −x‖1 = ‖p1 −x‖1 −2
holds for all x ∈ [x1 + 1, n] × [y1 + 1,m]. Hence, Player 1 now has the unique shortest
distance to all those positions where the distance from p1 was at most one larger than the
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Figure 2 Example of a strategy profile in which Player 1 (white circle) has both other players to his/her top right
with distance at least three (the shaded region denotes the possible positions for Player 2 and 3). Player 1 can
increase his/her payoff by moving closer to the others (star).

shortest distance from any other player (clearly, there exists at least one such position with
color j 
= 1). By Observation 3.3, these positions now get color 1, thus, Player 1 strictly
increases the payoff.

We go on to prove the lemmas, starting with the case that the players play far from
each other. The following lemma handles the first subcase, that is, when one of the players
strictly controls the others.

Lemma 3.5. A strategy profile with max{�x,�y} ≥ 3 in which one of the players strictly
controls the others is not a Nash equilibrium.

Proof. We assume w.l.o.g. that Player 1 strictly controls Player 2 and Player 3; specifically,
we assume that x1 < x2 and y1 < y2 and x1 < x3 and y1 < y3 holds. Figure 3 depicts the

Figure 3 Possible cases (up to symmetry) for Player 1 (white) strictly controlling Player 2 (gray) and Player 3
(black). Circles denote the players’ strategies. The shaded region contains the possible positions of both Players 2
and 3, whereas the black regions denote possible positions for Player 3 only. A star marks the position improving
the payoff of the respective player.
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three possible cases for the positions of Player 2 and Player 3. For each case, we show that
a player who can improve the payoff exists.

Case 1: We assume that (x2, y2) 
= (x1 + 1, y1 + 1) and (x3, y3) 
= (x1 + 1, y1 + 1). By
Proposition 3.4, Player 1 gets a higher payoff from (x1 + 1, y1 + 1).

Case 2: We assume w.l.o.g. that (x2, y2) = (x1 + 1, y1 + 1).
(a) We assume x2 < x3 and y2 < y3. Then, x3 > x2 + 1 or y3 > y2 + 1 holds,

since max{�x,�y} ≥ 3. Note that Player 3 strictly controls Player 1 and
Player 2 and that this case is symmetric to Case 1.

(b) We assume x2 ≥ x3 or y2 ≥ y3. Then, it holds that x3 = x2 or y3 = y2.
We assume x3 = x2 (the argument for y3 = y2 being analogous). Since
max{�x,�y} ≥ 3, we have y3 > y2 + 1, thus Player 3 can improve by
moving to (x2, y2 + 1) because then all positions in [m] × [y2 + 1, n] are
colored in color 3, and before, only a strict subset of these positions was
colored in color 3.

The other subcase, in which no player strictly controls the others, is handled by the
following lemma.

Lemma 3.6. A strategy profile with max{�x,�y} ≥ 3 in which no player strictly controls
the others is not a Nash equilibrium.

Proof. If no player strictly controls the others, then it follows that at least two players have
the same coordinate in at least one dimension. We perform a case distinction on the cases
as depicted in Figure 4.

Case 1: All three players have the same coordinate in one dimension. We assume that x1 =
x2 = x3 (the case y1 = y2 = y3 is analogous). Without loss of generality
also y1 < y2 < y3 holds. Since max{�x,�y} ≥ 3, it follows that yi+1 − yi ≥ 2
holds for some i ∈ {1, 2}, say for i = 2. Clearly, Player 3 can improve his/her
payoff by choosing (x3, y2 +1) (analogous to Case 2b in the proof of Lemma 3.5).

Case 2: There is a dimension where two players have the same coordinate but not all three
players have the same coordinate in any dimension. We assume x1 = x2 < x3

and y1 < y2 (all other cases are analogous). We also assume that y1 ≤ y3 ≤ y2,
since, otherwise, Player 3 strictly controls the others, and this case is handled by
Lemma 3.5.
(a) We assume that y2 = y1 +1. Then, x3 ≥ x1 +3 holds since max{�x,�y} ≥ 3.

Player 3 increases his/her payoff by moving to (x1 + 2, y1) (analogous to
Case 2b in the proof of Lemma 3.5).

(b) We assume that y2 = y1 +2. Then, x3 ≥ x1 +3 holds since max{�x,�y} ≥ 3.
Player 3 increases his/her payoff by moving to (x1 + 2, y1 + 1) (analogous to
Case 2b in the proof of Lemma 3.5).

(c) We assume that y2 > y1 + 2 and |y2 − y3| ≤ |y1 − y3|. That is, w.l.o.g.
Player 3 is closer to Player 2. Then, by Proposition 3.4, Player 1 increases
his/her payoff by moving to (x1 + 1, y1 + 1).

It remains to consider the cases when the players play close to each other.
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Figure 4 Possible cases (up to symmetry) when no player strictly controls the others. Circles denote the positions
of Player 1 (white) and Player 2 (gray). The black regions contain the possible positions for Player 3. A star marks
the position improving the payoff of the respective player.

Lemma 3.7. A strategy profile with max{�x,�y} ≤ 2 is not a Nash equilibrium.

Proof. First, we assume that �x +�y ≥ 2, because otherwise, there would be at least two
players on the same position (so each of them can improve by moving to any free vertex).
Without loss of generality, we also assume that �x ≤ �y , leaving the following cases to
consider (depicted in Figure 5).

Case 1: Let (x1, y1) = (x, y) ∈ [m]×[n−2], (x2, y2) = (x, y+1), and (x3, y3) = (x, y+2)
be the positions of the three players. Clearly, with these positions, Player 1 gets a
payoff of my, Player 2’s payoff is m, and Player 3 gets a payoff of m(n − y − 1).
Now, if y ≥ 3, then Player 2 can improve by choosing (x, y − 1), thus achieving a
payoff of m(y −1) > m. If y = 1, then Player 2 improves by playing on (x, y +3)
with a payoff of m(n − y − 2) > m (remember that n ≥ 5). Also, if y = 2
and n > 5, then Player 2 gets a higher payoff by choosing (x, y + 3). For y = 2
and n = 5, we observe that either x ≥ �m/2 or m − x ≥ �m/2 and assume,
w.l.o.g. that x ≥ �m/2 holds. Then, applying Observation 3.3, it holds that, if
Player 2 chooses (x − 1, y), then all positions in [x − 1] × [y + 1] are colored

Figure 5 Possible positions (up to symmetry) of three players playing inside a subgrid of size at most 3 × 3. The
position of Player 1 (white) is denoted (x, y).
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in color 2, Thus, the payoff of Player 2 is at least (�m/2 − 1)3 > m (remember
that m ≥ 5).

Case 2: Let (x1, y1) = (x, y) ∈ [m − 1] × [n − 1], (x2, y2) = (x, y + 1), and (x3, y3) =
(x+1, y) be the positions of the three players. Note that, due to symmetry, this is the
only case we have to consider (w.l.o.g.). Clearly, exactly the positions in [x] × [y]
are colored in color 1, therefore Player 1 has a payoff of xy. If x < m/2, then
position (x + 2, y) yields a payoff of (m − x − 1)n ≥ (�m/2 − 1)n for Player 1
since Player 1 colors all vertices in [x + 2,m] × [n]. Note that �m/2 − 1 ≥ x

and n > y, thus, Player 1’s payoff improved. Analogously, for y < n/2, Player 1’s
payoff from position (x, y + 2) is at least m(�n/2− 1) > xy. If x > �m/2, then
Player 3 can improve by choosing (x − 1, y). To see that this is true, note first
that by choosing (x3, y3), Player 3 colors only positions in [x + 1,m] × [n]. Now,
observe that if position (x ′, y ′) is colored in color 3 when Player 3 chooses (x3, y3),
then it holds also that position (x − (x ′ −x), y) is colored in color 3 when Player 3
chooses (x − 1, y) = (x − (x3 − x), y), due the symmetries, and because the
distances from this position to the players, positions are all identical. Hence,
Player 3 colors at least the same number of positions in [x − (m−x), x −1]× [y].
Note that x − (m − x) ≥ 2 since x > �m/2. By Observation 3.3, Player 3
additionally colors position (1, 1), yielding a strictly greater payoff. By analogous
arguments, for y > �n/2, the position (x, y − 1) yields a better payoff for
Player 2. Finally, assume x = �m/2 and y = �n/2. Now, Player 1 can improve
by choosing (x − 1, y + 1), thus coloring at least all positions in [x − 1] × [n],
giving a payoff of at least (�m/2 − 1)n > �m/2 · �n/2 = xy for m ≥ 5
and n ≥ 5.

Case 3: Let (x1, y1) = (x, y) ∈ [m − 1] × [n − 2], (x2, y2) = (x, y + 2), and (x3, y3) =
(x + 1, y) be the positions of the three players. First, note that Player 1 colors all
positions in [x] × [y], gaining a payoff of xy, Player 2 colors [m] × [y + 2, n],
gaining a payoff of m(n − y − 1), and Player 3 gets all positions in [x + 1, n] ×
[y+1], gaining a payoff of exactly (m−x)(y+1). Now, if y = 1, then Player 1 can
choose (x, 4) to obtain a payoff of m(n−3) > x, since m > x and n−3 ≥ 2. Hence,
assume y > 1, and observe that both the payoff of Player 1 from (x + 1, y − 1)
and the payoff of Player 3 from (x, y − 1) equals m(y − 1). Assuming that
we have a Nash equilibrium, we obtain the two inequations xy ≥ m(y − 1)
and (m − x)(y + 1) ≥ m(y − 1), which yield m(y − 1)/y ≤ x ≤ 2m/(y + 1).
Note that we obtain a contradiction for y ≥ 3. Hence, we can assume that y = 2
and �m/2 ≤ x ≤ �2m/3�. If n ≥ 6, then Player 1 can improve by choosing (x, 5)
achieving a payoff of m(n − 4) ≥ 2m > 2x. Thus, we also assume n = 5.
Now, Player 1 can choose position (x − 1, 4) to color all but three positions
in [x−1] × [5]. The only positions that she does not color are (x−1, 2), (x−1, 1),
and (x − 2, 1). The payoff is thus 5(x − 1) − 3, which, for all x ≥ �m/2 ≥ 3, is
more than 2x.

Case 4: Let (x1, y1) = (x, y) ∈ [m − 1] × [n − 2], (x2, y2) = (x, y + 2), and (x3, y3) =
(x + 1, y + 1) be the positions of the three players. It is easy to see that, if
x = m − 1, then Player 3’s payoff is exactly one, and more can be gained by
choosing (x − 1, y + 1) instead. For x < m − 1, note that, apart from (x3, y3),
Player 3 colors only positions (x ′, y ′) with x ′ ≥ x3 + 1 = x + 2. Note also
that Player 3 does not color all of these positions. For example, at least one of
the positions (x + 2, y − 1) or (x + 2, y + 3) exists on the grid (since n ≥ 5)



374 BULTEAU ET AL.

and is reached by Player 1 or Player 2 at the same time during the propagation
process of the game. However, by choosing (x +2, y +1), Player 3 still colors the
position (x3, y3) and clearly all positions (x ′, y ′) with x ′ ≥ x + 2, thus improving
the payoff.

Case 5: Let (x1, y1) = (x, y) ∈ [m − 1] × [n − 2], (x2, y2) = (x + 1, y + 2), and
(x3, y3) = (x + 1, y + 1) be the positions of the three players. If y = n − 2,
then Player 3’s payoff is exactly m. Therefore, the payoff is increased by moving
to (y − 1, x), because then the payoff is at least 2m. Thus, we can assume that
y < n−2. If x ≥ m−2, then Player 2’s payoff is either 1 or 3 (it is 1 if x = m−1
and 3 if x = m − 2). Therefore, the payoff is increased by moving to (x − 2, y),
because then the payoff is at least n (and n ≥ 5). Thus, we can assume that
x < m − 2. We are left only with the case when y < n − 2 and x < m − 2. In this
case, Player 2 increases his/her payoff by moving to (x + 2, y + 2).

Case 6: Let (x1, y1) = (x, y) ∈ [m − 2] × [n − 2], (x2, y2) = (x, y + 2), and (x3, y3) =
(x + 2, y) be the positions of the three players. It is clear that only a strict subset
of the positions in [x + 2,m] × [n] are colored in color 3 (for example, the
position (x + 2, y + 2) is not colored in color 3). By choosing (x + 2, y + 1),
however, all positions in [x + 2,m] × [n] are colored in color 3, resulting in a
strictly higher payoff for Player 3.

Case 7: Let (x1, y1) = (x, y) ∈ [m − 2] × [n − 2], (x2, y2) = (x + 1, y + 2), and
(x3, y3) = (x + 2, y + 1) be the positions of the three players. By Proposition 3.4,
Player 1 increases the payoff by moving to (x1 + 1, y1 + 1).

Case 8: Let (x1, y1) = (x, y) ∈ [m − 2] × [n − 2], (x2, y2) = (x + 1, y + 2), and
(x3, y3) = (x + 2, y + 2) be the positions of the three players. By Proposition 3.4,
Player 1 increases the payoff by moving to (x1 + 1, y1 + 1).

Case 9: Let (x1, y1) = (x, y) ∈ [m − 2] × [n − 2], (x2, y2) = (x + 1, y + 1), and
(x3, y3) = (x + 2, y + 2) be the positions of the three players. Notice that the
payoff of Player 2 is only one. It is clear that Player 2 increases the payoff more
by moving to (x, y + 1), because then the payoff is at least two, because Player 2
also colors the position (x, y + 2).

Case 10: Let (x1, y1) = (x, y) ∈ [m − 2] × [n − 2], (x2, y2) = (x, y + 2), and (x3, y3) =
(x + 2, y + 1) be the positions of the three players. Note first that Player 1 colors
exactly the positions in [x + 1] × [y], thus, that payoff is (x + 1)y. For y = 1,
Player 1 can move to (x, 4), achieving a payoff of at least (x+1)(n−3) ≥ 2(x+1)
because he/she colors all positions in [x + 1] × [4, n]. Otherwise, if y ≥ 2, then,
by choosing (x + 1, y), Player 1 still colors all positions in [x + 1] × [y], and
additionally also the position (x + 2, y − 1).

4. HYPERCUBES

Diffusion games on hypercubes have been studied [3] and the existence of a Nash
equilibrium for two players on every d-dimensional hypercube have been proved [3]. In
this section, we extend that result to four players.

Recall that the vertices of Hd are all binary strings of length d, where two vertices are
adjacent if and only if they differ in exactly one bit. Moreover, the geodesic distance of two
vertices u and v is exactly the Hamming distance �(u, v). By a, we denote the complement
of a = a1 . . . ad , where ai := 1 − ai for all i ∈ [d].

We prove the following theorem.
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Theorem 4.1. Let x, y ∈ {0, 1}d be two adjacent vertices of Hd for d ≥ 1. Then, every
strategy profile (p1, . . . , p4) with {p1, . . . , p4} = {x, x, y, y} is a Nash equilibrium.

A first step to prove Theorem 4.1 is to show that, for a strategy profile of the form as
described in Theorem 4.1, it holds that whenever a single player chooses another position,
then, for the resulting strategy profile, the payoff of each player equals exactly the number
of vertices that has a unique closest distance. Note that we already know from Observation
3.3 that each player always colors all the vertices to which he/she is uniquely closest. In
Lemma 4.2, we will show the opposite direction: no player obtains vertices that are not of
the unique closest distance among all players (note that this does not hold in general). In a
second step, we can then compute the payoffs of all players and show that they are maximal
for the strategy profile stated in Theorem 4.1.

We start with the following lemma.

Lemma 4.2. Let x, y ∈ {0, 1}d be two adjacent vertices in Hd , d ≥ 1, and let (p1, . . . , p4)
be a strategy profile with {x, y, y} ⊆ {p1, . . . , p4} and pi 
= pj for all i, j ∈ [4], i 
= j .
Let v ∈ {0, 1}d be a vertex and let δ := mini=1,...,4 �(pi, v).

If there exist i, j ∈ [4], i 
= j , such that �(pi, v) = �(pj , v) = δ, then the vertex v

will not be colored by any player at the end of the propagation process.

Proof. Because the order of the players does not matter, we assume that p1 = p ∈ {0, 1}d ,
p2 = x, p3 = y, and p4 = y. For the case δ ≤ 1, the statement clearly holds by definition
of the propagation process. Hence, we consider δ ≥ 2. Note that for any two vertices
pi 
= pj with �(pi, v) = �(pj , v) = δ, the distance �(pi, pj ) must be even (and thus,
at least two) because two vertices with an odd distance cannot have the same distance to
any other vertex. Hence, x and y can never have the same distance δ to v because their
distance is one (they are adjacent). It follows that either two or three players have the same
shortest distance δ to v among all players. For both cases, we show that there always exist
two neighbors of v, each having a different player with a unique closest distance of δ − 1.
Using Observation 3.3, we can then conclude that these neighbors are colored in different
colors and that v is, thus, removed.

First, assume that exactly the two players i and j have distance δ to v, while the
other two players have a distance larger than δ. Then, pi and pj differ in �(pi, pj ) = 2c

bits for some c ≥ 1. Note that v equals pi in exactly c of these bits and equals pj in the
other c bits (otherwise they cannot have the same distance to v). Hence, by swapping one
of the c bits where v equals pj , we reach a neighbor u of v such that �(pi, u) = δ − 1 <

�(pj , u) = δ + 1. Analogously, swapping one of the c bits where v equals pi yields a
neighbor w with �(pj ,w) = δ − 1 < �(pi,w) = δ + 1. Note that the other two players
have distance at least δ to both u and w since their distance to v is at least δ+1. Thus, pi has
the unique shortest distance to u, and pj has the unique shortest distance to w. According
to Observation 3.3, u and w are thus colored in different colors at time δ −1. Consequently,
v is removed at time δ.

Now, assume that exactly three players have the minimum distance δ to v. Since x

and y are adjacent, we know that the only two possible cases are that p, y, and either x or y

have distance δ to v.

Case 1: �(p, v) = �(x, v) = �(y, v) = δ < �(y, v). Note that �(y, v) = d − �(y, v),
which yields δ < d/2. Note further that x and y differ in an even number
of �(x, y) = d −1 bits, which means d is odd. Hence, δ ≤ (d −1)/2. Moreover, v
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equals each of x and y in exactly half of their d − 1 differing bits (otherwise v

cannot have the same distance to both). It follows that δ = (d − 1)/2 and it also
holds that xi = yi 
= vi is not possible for any i ∈ [d] (this holds since xi = y

implied y = vi , which holds since δ = (d − 1)/2). Now consider the vertex p

which also differs in δ bits to v. Clearly, p and v can neither differ in the same δ bits
as v and x, nor in the same δ bits as v and y since then p1 would be equal to either x

or y. Hence, there exist indices i and j among the d − 1 differing bits of x and y

such that vi = yi = pi 
= xi and vj = xj = pj 
= yj . Thus, by swapping the ith
bit of v, we reach a neighbor u with �(x, u) = δ−1 < �(p, u) = �(y, u) = δ+1.
Similarly, swapping the j th bit of v yields a neighbor w with �(y,w) = δ − 1 <

�(p,w) = �(x,w) = δ + 1. Clearly, also y has distance at least δ to both u

and w. Hence, by Observation 3.3, u and w are colored in different colors and,
thus, v is removed.

Case 2: �(p, v) = �(y, v) = �(y, v) = δ < �(x, v). Note that �(y, y) = d is even and
that v equals both y and y in exactly δ = d/2 bits. As in Case 1, the vertex p

cannot differ from v in the same δ bits as y or y. Thus, we again find indices i and j

with vi = yi = pi 
= yi and vj = yj = pj 
= yj such that for the corresponding
neighbors u and w of v we have �(y, u) = δ − 1 < �(p, u) = �(y, u) = δ + 1
and �(y,w) = δ−1 < �(p,w) = �(y,w) = δ+1. Since, by assumption, x has
distance at least δ from u and w, it follows that u and w are colored in different
colors and v is removed.

Lemma 4.2 (together with Observation 3.3) shows that in every strategy profile as described
in Theorem 4.1, the payoff of each player equals the number of vertices to which he/she
has the unique minimum distance among all players.

The following lemma gives upper bounds on the possible payoffs for players in such
a profile.

Lemma 4.3. Let x, y ∈ {0, 1}d , d ≥ 1, and let V
yy
x := {v ∈ {0, 1}d | �(v, x) <

min{�(v, y),�(v, y)}. Then, |V yy
x | ≤ 2d−2. Moreoever, if d is odd, then the bound is even

smaller, that is,

|V yy
x | ≤ 2d−2 − 1

2

(
d − 1

(d − 1)/2

)
.

Proof. Let α := �(x, y); thus, �(x, y) = d − α. For any vertex v ∈ V
yy
x , it holds

�(x, v) < �(y, v) and also �(x, v) < �(y, v). The first inequality implies that v equals x

in more than half of the α bits where x and y differ. Analogously, the second inequality
implies that v equals x in more than half of the d −α bits where x and y differ. Clearly, the
set of bits where x and y differ is disjoint from the set of bits where x and y differ. Hence,
the number of possible vertices in V

yy
x is

|V yy
x | =

⎛
⎝ α∑

�=�(α+1)/2

(
α

�

)⎞
⎠ ·

⎛
⎝ d−α∑

�=�(d−α+1)/2

(
d − α

�

)⎞
⎠ (1)

≤ 2α−1 · 2d−α−1 = 2d−2,
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which proves the general bound. Now, for d being odd, note that either α or d − α is even.
We assume w.l.o.g. that α ≤ d − 1 is even (that is, d − α is odd). Then, Equation (1) can
be written as

|V yy
x | =

⎛
⎝ α∑

�=α/2+1

(
α

�

)⎞
⎠ ·

⎛
⎝ d−α∑

�=�(d−α)/2

(
d − α

�

)⎞
⎠

≤
(

2α−1 − 1

2

(
α

α/2

))
· 2d−α−1

= 2d−2 −
(

2d−α−2 ·
(

α

α/2

))
.

We now use the following identity for the central binomial coefficient(
α

α/2

)
= α!

((α/2)!)2
= 2α · 1 · 3 · . . . · (α − 1)

2 · 4 · . . . · α

to obtain

|V yy
x | ≤ 2d−2 −

(
2d−2 · 1 · 3 · . . . · (α − 1)

2 · 4 · . . . · α

)

≤ 2d−2 −
(

2d−2 · 1 · 3 · . . . · (d − 2)

2 · 4 · . . . · (d − 1)

)

≤ 2d−2 − 1

2

(
d − 1

(d − 1)/2

)
.

We can now proceed with proving Theorem 4.1.

Proof of Theorem 4.1 To start with, observe that for d = 1, the statement clearly holds
since there are only two vertices in H1, which gives a payoff of zero for each player, and it is
not possible to obtain more than zero vertices for any player (by definition of the diffusion
game).

In the following, we consider d ≥ 2. Because the ordering of the players does not mat-
ter, we fix the strategy profile (p1 = x, p2 = x, p3 = y, p4 = y). Moreover, due to the sym-
metry of the hypercube, we have to consider only the case that Player 1 changes her strategy.
Let us first determine the payoff of Player 1 for the above profile. According to Observation
3.3 and Lemma 4.2, we know that Player 1 obtains exactly those vertices v ∈ {0, 1}d to
which he/she has the unique minimum distance: �(x, v) < min{�(x, v),�(y, v),�(y, v)}.
Recall that x and y are adjacent; that is, they differ in �(x, y) = 1 bit. Therefore, �(x, v) <

�(y, v) implies that v equals x in that bit. Thus, we have �(y, v) = �(x, v)+1, �(x, v) =
d−�(x, v), and �(y, v) = d−1−�(x, v). Hence, v has to satisfy �(x, v) < (d−1)/2 in or-
der to satisfy �(x, v) < �(y, v) and �(x, v) < �(x, v). That is, v is allowed to differ from x

in at most �(d −1)/2� of the d −1 bits where x is equal to y. The payoff of Player 1 is, thus,

�(d−1)/2�∑
�=0

(
d − 1

�

)
.

Note that this payoff equals 2d−2 if d is even, and 2d−2 − 1
2

(
d−1

(d−1)/2

)
if d is odd.
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Now, let Player 1 choose an arbitrary vertex p1 ∈ {0, 1}d . Clearly, we can assume
that p1 
∈ {x, y, y} since the payoff is zero otherwise. Hence, by Observation 3.3 and
Lemma 4.2, we know again that the payoff of Player 1 equals the number of vertices in
{v ∈ {0, 1}d | �(x, v) < min{�(x, v),�(y, v),�(y, v)}}. By Lemma 4.3, we know that
this number is at most 2d−2 if d is even, and at most 2d−2 − 1

2

(
d−1

(d−1)/2

)
if d is odd. Therefore,

Player 1 cannot increase the payoff by changing strategies, which finishes the proof. �

The existence of Nash equilibria on hypercubes for three players as well as for more
than four players remains open, in general.

5. GENERAL GRAPHS

In this section, we study the existence of Nash equilibria on arbitrary graphs. Using
computer simulations, we found that for two players, a Nash equilibrium exists on any graph
with at most n = 7 vertices. For n = 8, we obtained the graph depicted in Figure 6, for
which there is no Nash equilibrium for two players. Because it is clear that adding isolated
vertices to the graph in Figure 6 does not allow for a Nash equilibrium, we conclude the
following.

Corollary 5.1. For two players, there is a Nash equilibrium on each n-vertex graph if and
only if n ≤ 7.

For more than two players, we can show the following.

Theorem 5.2. For any k > 2 and any n ≥ � 3
2k� + 2, there exists a tree with n vertices

such that there is no Nash equilibrium for k players.

Proof. We describe a construction only for n = � 3
2k� + 2, because we can add arbitrarily

many isolated vertices without introducing a Nash equilibrium.
We first describe the construction for k being odd. We create one P3, whose vertices we

denote by u1, u2, and u3, such that u2 is the middle vertex of this P3. For each i ∈ [2, � k
2],

we create a copy of P3, denoted by Pi , whose vertices we denote by vi,1, vi,2, and vi,3, such
that vi,2 is the middle vertex of Pi . For each i ∈ [2, � k

2], we connect vi,1 to u3. An example
for k = 9 is depicted in Figure 7.

To see that there is no Nash equilibrium for the constructed graph, consider first
strategy profiles for which u3 is free (that is, no player chooses u3). If both u1 and u2 are

Figure 6 A graph on 8 vertices with no Nash equilibrium for two players.
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Figure 7 A tree with no Nash equilibrium, for 9 players.

free also, then there exists some Pi with at least two occupied vertices (by the pigeon-hole
principle). It is clear that at least one of the players occupying these vertices can increase
the payoff by moving to u3. If u1 and u2 are both occupied, then there exists some Pi with
at most one occupied vertex (again, by the pigeon-hole principle). It is clear that the player
occupying this vertex can increase the payoff by moving to u3. If only one vertex out of u1

and u2 is occupied, then the player occupying this vertex can increase the payoff by moving
to u3. Therefore, we can assume that u3 is occupied. In this case, it holds that if both u1 and
u2 are free, then at least one player has a payoff of 1 and gains more by moving to u2. If
both u1 and u2 are occupied, then at least one Pi has at most one occupied vertex, and this
occupied vertex can only be vi,1, therefore, the player occupying u2 gains more by moving
to vi,2. Finally, if exactly one out of u1 and u2 is free, then at least one Pi1 has at most one
occupied vertex, and this occupied vertex can only be vi1,1. Moreover, at least one Pi2 has at
least two occupied vertices, therefore, a player occupying one of these vertices gains more
by moving to vi1,2. Therefore, this graph has no Nash equilibrium for k players.

For k being even, we create one P2, whose vertices we denote by u1, u2. For each
i ∈ [2, k

2 + 1], we create a copy of P3, denoted by Pi , whose vertices we denote by vi,1,
vi,2, and vi,3, such that vi,2 is the middle vertex of Pi . For each i ∈ [2, k

2 + 1], we connect
vi,1 to u2. This graph has no Nash equilibrium for k players, as can be verified by a similar
analysis as above.

6. CONCLUSION

We studied a competitive diffusion game for three or more players on several classes
of graphs, answering—as a main contribution—an open question concerning the existence
of a Nash equilibrium for three players on grids [8] negatively. Further, extending previous
results on hypercubes [3], we proved that Nash equilibria always exist for four players on
d-dimensional hypercubes. With this work, we provide a first systematic study of this game
for more than two players. However, there are several questions left open, of which we
mention some here.

An immediate question (generalizing Theorem 3.1) is whether a Nash equilibrium
exists for more than three players on a grid. Computer simulations lead us to conjecture that
there is no Nash equilibrium for four players on a grid of size larger than 6 × 6. A further
immediate question (generalizing Theorem 4.1) is whether a Nash equilibrium exists for
three players or more than four players on a d-dimensional hypercube. Also, giving a lower
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bound for the number of vertices n such that there is a graph with n vertices with no Nash
equilibrium for k players is an interesting question because it is not clear that the upper
bounds given in Theorem 5.2 are optimal. In other words, is it true that n ≤ 3

2k + 1 implies
the existence of a Nash equilibrium for k players?
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